Ductless Floating Air[®] Single Zone R- 32 Refrigerant

System	FSHW091C, FSHW121C FSHW183D, FSHW243D, FSHW36D
Wall Mounted Unit	FAHFW09A1C, FAHFW12A1C FAHFW18A3D, FAHFW24A3D, FAHSW36A3D
Outdoor Unit	FSHSR09B1C, FSHSR12B1C FSHSR18B3D, FSHSR24B3D, FSHSR36B3D

96122001_00

TABLE OF CONTENTS

	CONTENTS
Table of Contents	
INTRODUCTION	1
Important Safety Information	
Personal Injury Or Death Hazards	Į
SPECIFICATION	{
9-12k System C Models	{
18-36k System D Models	1'
Room Size Restriction	14
Indoor Unit Clearances	1
Outdoor Unit Clearances	1
Dimensions Indoor Unit	16
FAHSW09A1C, FAHSW12A1C, FAHFW09A3D, FAHFW12A3D	10
FAHFW18A3D, FAHFW24A3D	11
FAHSW36A3D	18
Dimensions Outdoor Unit	19
FSHSR09B1C, FSHSR12B1C	19
FSHSR18A3D	20
FSHSR24A3D	2
FSHSR36A3D	22
INSTALLATION OF THE INDOOR UNIT	23
Pre-Installation Checkpoints	23
Install Mounting Plate	24
Drill Hole for Piping	25
Piping Provisions	20
Indoor Unit Installation	22
Electrical	3
Indoor Unit Wiring Connection Diagram	32
Tools	33
Clearances	34
Pre-Installation Checkpoints	33
Install Condensate Drain	36
Install Ground Pad or Wall Hangers	36
Piping Connections to Outdoor Unit	30
Specifications	37
Wiring Diagrams	38
Leak Check, Evacuation, and Charging	39
Startup And Operation	41
OPERATION	42
Operation Range (Cooling and Heating)	42
Remote Control	43
Unit Function	53
Special Function Instruction	50
MAINTENANCE	65
TROUBLESHOOTING	70
Outdoor Unit	7(
Diagnostic Codes _ Unit Not Running	7(
Diagnostic Codes when Compressor is Running	72
Indoor Unit	73
Diagnostic Codes	73
Protection Circuit Fault Isolation	76
Compressor Fault Isolation	75
Electric Filter Board Fault Isolation	
	71
Electrical Communication Fault ISOLATION	71
Unit Does Not Run	78
Error Code 39-DC Fan	79
Error Code 9	80
Error Code 13	8'
Error Code 8	8.
Error Code 16	82
Error Code 16 Heating Mode	82
Error Code 21 Cooling Mode	82
Error Code 11 EEPROM Fault	82
Error Code 20	83
Error Code 33	84
Error Code 34	84
Error Code 14	84
Error Code 1	84
Error Code 2	84
Error Code 6	84
	0-

TABLE OF CONTENTS

Error Code 19	85
Error Code 36	87
Blank Display/ Indoor Micro Switch	90
COMPONENTS TESTING	92
Compressor	92
Capillary Tube	93
Reversing Valve	94
Checking the Reversing Valve	94
Checking The Reversing Valve Solenoid	94
Indoor Fan Motor Testing (230v models)	95
Indoor Fan Motor Testing (115v models)	96
Indoor Unit Main PCB Terminal ID (115v)	98
FAHFW09A1C, FAHFW12A1C	98
230v Indoor Unit Main PCB Terminal ID (No A2L Sensor Capability)	99
FAHFW18A3D, FAHFW24A3D, FAHFW36A3D	99
230v Indoor Unit Main PCB Terminal ID (With A2L Sensor Capability)	100
FAHFW18A3D, FAHFW24A3D, FAHFW36A3D	100
115v Outdoor Unit - Main PCB Terminal ID	101
FPHSR09A1C, FPHSR12A1C	101
FSHSR18B3D	102
FSHSR24B3D	103
FSHSR36B3D	104
R-32 SEALED SYSTEM REPAIR	105
General Information	105
Required Equipment	107
Refrigerant Removal, Recovery, and Evacuation	108
Component Replacement/Brazing	109
Refrigerant Charging	110
Triple Evacuation	111
Compressor Replacement	112
Replace The Reversing Valve	113
WIRING DIAGRAMS	114
115v Indoor Unit	114
FAHSW091AC, FAHSW12A1C	114
230v Indoor Unit with A2L Sensor Capability	115
FAHFW18A3D, FAHFW24A3D, FAHSW36A3D	115
230v Indoor Unit Without A2L Sensor Capability	116
FAHFW18A3D, FAHFW24A3D, FAHSW36A3D	116
115v Outdoor Unit	117
FPHSR09A1C, FPHSR12A1C	117
230V Outdoor Unit	118
FSHSR18A3D, FSHSR24A3D, FSHSR36A3D	118
FSHSR36A3D	119
APPENDIX	120
Thermistor Resistance Values	120

Thermistor Resistance Values

Important Safety Information

The information in this manual is intended for use by a qualified technician who is familiar with the safety procedures required for installation and repair, and who is equipped with the proper tools and test instruments required to service this product.

Installation or repairs made by unqualified persons can result in subjecting the unqualified person making such repairs as well as the persons being served by the equipment to hazards resulting in injury or electrical shock which can be serious or even fatal.

Maintenance is the responsibility of the owner. Failure to properly maintain or repair equipment may result in personal injury and/or various types of property damage (fire, flood, etc.).

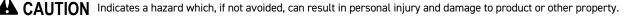
Safety warnings have been placed throughout this manual to alert you to potential hazards that may be encountered. If you install or perform service on equipment, it is your responsibility to read and obey these warnings to guard against any bodily injury or property damage which may result to you or others. Due to continuing research in new energy-saving technology, all information in this manual is subject to change without notice.

This service manual is designed to be used in conjunction with the installation and operation manuals provided with each air conditioning system. This service manual was written to assist the professional service technician to guickly and accurately diagnose and repair malfunctions.

Installation procedures are not given in this manual. They are given in the Installation/Operation manual.

SAFETY IS IMPORTANT

We have provided many important safety messages in this manual and on your appliance. Always read and obey all safety messages.


This is a safety Alert symbol. This symbol alerts you to potential hazards that can kill or hurt you and others.

All safety messages will tell you what the potential hazard is, tell you how to reduce the chance of injury, and tell you what will happen if the instructions are not followed.

All safety messages will follow the safety alert symbol with the word "WARNING" or "CAUTION". These words mean:

A WARNING Indicates a hazard which, if not avoided, can result in severe personal injury or death and damage to product or other property.

NOTICE

Indicates property damage can occur if instructions are not followed.

This symbol indicates that this appliance uses a flammable refrigerant. If the refrigerant is leaked and is exposed to an external ignition source, there is a risk of fire.

This symbol indicates that the Operation Manual should be read carefully.

This symbol indicates that service personnel should be handling this equipment with reference to the installation manual.

This symbol indicates that information is available such as the Installation and Operation manual, or the Service Manual.

	A WARNING	AVERTISSEMENT	ADVERTENCIA
SAFETY FIRST	Do not remove, disable or bypass this unit's safety devices. Doing so may cause fire, Doing so may cause fire, injuries, or death.	Ne pas supprime, désacti- ver ou contourner cette l´unité des dispositifs de sécurité, faire vous risque- riez de provoquer le feu, les blessures ou la mort.	No eliminar, desactivar o pasar por alto los dispositi- vos de seguridad de la unidad. Si lo hace podría producirse fuego, lesiones o muerte.

A WARNING

ALWAYS USE INDUSTRY STANDARD PERSONAL PROTECTIVE EQUIPMENT (PPE)

ELECTRICAL HAZARDS:

- Unplug and/or disconnect all electrical power to the unit before performing inspections, maintenance, or service.
- Make sure to follow proper lockout/tag out procedures.
- Always work in the company of a qualified assistant if possible.
- Capacitors, even when disconnected from the electrical power source, retain an electrical charge potential capable of causing electric shock or electrocution.
- Handle, discharge, and test capacitors according to safe, established, standards, and approved procedures.
- Extreme care, proper judgment, and safety procedures must be exercised if it becomes necessary to test or troubleshoot equipment with the power on to the unit.
- Do not spray water on the air conditioning unit while the power is on.
- Electrical component malfunction caused by water could result in electric shock or other electrically unsafe conditions when the power is restored and the unit is turned on, even after the exterior is dry.
- Use air conditioner on a single dedicated circuit within the specified amperage rating.
- Follow all safety precautions and use proper and adequate protective safety aids such as: gloves, goggles, clothing, properly insulated tools, and testing equipment etc.
- Failure to follow proper safety procedures and/or these warnings can result in serious injury or death.

PERSONAL INJURY OR DEATH HAZARDS

• **REFRIGERATION SYSTEM REPAIR HAZARDS:**

- Use approved standard refrigerant recovering procedures and equipment to relieve high pressure before opening system for repair. Reference EPA regulations (40 CFR Part 82, Subpart F) Section 608.
- Do not allow liquid refrigerant to contact skin. Direct contact with liquid refrigerant can result in minor to moderate injury.
- Be extremely careful when using an oxy-acetylene torch. Direct contact with the torch's flame or hot surfaces can cause serious burns.
- Make certain to protect personal and surrounding property with fire proof materials and have a fire extinguisher at hand while using a torch.
- Provide adequate ventilation to vent off toxic fumes, and work with a qualified assistant whenever possible.
- Always use a pressure regulator when using dry nitrogen to test the sealed refrigeration system for leaks, flushing etc.

• MECHANICAL HAZARDS:

- Extreme care, proper judgment and all safety procedures must be followed when testing, troubleshooting, handling, or working around unit with moving and/or rotating parts.
- Be careful when, handling and working around exposed edges and corners of the sleeve, chassis, and other unit components especially the sharp fins of the indoor and outdoor coils.
- Use proper and adequate protective aids such as: gloves, clothing, safety glasses etc.
- Failure to follow proper safety procedures and/or these warnings can result in serious injury or death.

• PROPERTY DAMAGE HAZARDS

• FIRE DAMAGE HAZARDS:

- Read the Installation/Operation Manual for the air conditioning unit prior to operating.
- Use air conditioner on a single dedicated circuit within the specified amperage rating.
- Do not remove ground prong of plug.
- Do not cut or modify the power supply cord.
- Do not use extension cords with the unit.
- Be extremely careful when using acetylene torch and protect surrounding property.
- Failure to follow these instructions can result in fire and minor to serious property damage.

• WATER DAMAGE HAZARDS:

- Improper installation, maintenance or servicing of the air conditioner unit can result in water damage to personal items or property.
- Ensure that the units drain has sufficient pitch to the outside to allow water to drain from the unit.
- Do not drill holes in the bottom of the drain pan or the underside of the unit.
- Failure to follow these instructions can result in damage to the unit and/or minor to serious property damage.

Personal Injury Or Death Hazards

A WARNING: The manufacturer's warranty does not cover any damage or defect to the air conditioner caused by the attachment or use of any components, accessories or devices (other than those authorized by the manufacturer) into, onto or in conjunction with the air conditioner. You should be aware that the use of unauthorized components, accessories or devices may adversely affect the operation of the air conditioner and may also endanger life and property. The manufacturer disclaims any responsibility for such loss or injury resulting from the use of such unauthorized components, accessories or devices.

A WARNING: This appliance is not intended for use by persons (Including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety.

Children should be supervised to ensure that they do not play with the appliance.

AWARNING: The maximum altitude for this appliance is 2,000 meters(6,562 feet).

Do not use above 2,000 meters(6,562 feet).

AWARNING: Electrical Shock Hazard

Disconnect all power to the unit before starting maintenance. All electrical connections and wiring MUST be installed by a gualified electrician and conform to the National Code and all local codes which have jurisdiction. Failure to do so can result in property damage, severe electrical shock or death.

WARNING: Read Installation Manual

Read this manual thoroughly prior to equipment installation or operation. It is the installer's responsibility to properly apply and install the equipment. Installation must be in conformance with the NFPA 70-2023 national electric code or current edition, International Mechanic code 2021 or current edition, and any other local or national codes.

AWARNING: Safety First

Do not remove, disable, or bypass this unit's safety devices. Doing so may cause fire, injuries, or death.

WARNING: This Product uses R-32 Refrigerant

Do not use means to accelerate the defrosting process or to clean, other than those recommended by the manufacturer.

The appliance shall be stored in a room without continuously operating ignition sources (for example: open flames, an operating gas appliance or an operating electric heater.

Do not pierce or burn.

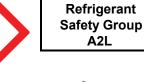
Be aware that refrigerants may not contain an odor.

A WARNING: Refrigeration System under High pressure Do not puncture, heat, expose to flame or incinerate. Only certified refrigeration technicians should service this equipment. R-32 systems operate at higher pressures than R22 equipment. Appropriate safe service and handling practices must be used.

CAUTION: Do Not Operate Equipment During Active Stages Of Construction

To ensure proper operation, Friedrich requires that all equipment is not operated during active construction phases. This includes active stages of completing framing, drywalling, spackling, sanding, painting, flooring, and moulding in the equipment's designated conditioning space. The use of this equipment during construction could result in premature failure of the components and/or system and is in violation of our standard warranty guidelines. The operation of newly installed equipment during construction will accelerate the commencement and/or termination of the warranty period.

WARNING: Keep all air circulation and ventilation openings free from obstruction.


WARNING: The unit should not be in contact with any equipment that will transmit vibration to the unit. Any excessive vibration or pulsation to the unit could result in damage to the refrigerant tubing.

1	\sim	1
-1		Ъ
ш		ш
		ш
	_	111
11	-	-

9-12k System C Models

	FAC Model Set		FSHW091C	FSHW121C
Model	FAC Indoor Model	Unit	FAHSW09A1C	FAHSW12A1C
	FAC Outdoor Model		FSHSR09B1C	FSHSR12B1C
	Power Supply	V/ph/Hz	115V~,	60Hz,1P
	Energy Star Standard	Y/N	Y	N
	Energy Star -Cold Climate	Y/N	Ν	N
	Performance			
	Rated Capacity at 95	Btu/h	9000	12000
	Cooling Capacity Range(MIN-MAX)	Btu/h	3600-10000	4000-13000
	Capacity at 115	Btu/h	8010	10680
Quality	Power Input	W	720	1176
Cooling	Current	А	6.7	10.7
	EER2 at 95	Btu/h/W	12.5	10.2
	SEER2	Btu/h/W	20.0	18.0
	Working Temperature Range		5 -118	5 -118
	Rated Capacity at 47	Btu/h	9500	12000
	Heating Capacity Range(MIN-MAX)	Btu/h	3600-10000	4000-13000
	Power Input	W	679	1034
	Current	А	6.2	9.6
	COP2 at 47	W/W	4.1	3.4
	COP @ 5F	W/W	2.0	1.9
	HSPF2(IV)	Btu/h/W	9.0	8.5
Heating	HSPF2(V)	Btu/h/W	8.0	7.0
5	Rated Capacity Heating at 17°F -8.3	Btu/h	6800	8800
	Maximum Heating Capacity @17F -8.3	Btu/h	6800	8800
	Maximum Heating Capacity @5F -15	Btu/h	6000	7500
	Maximum Heating Capacity @-5F -20.5	Btu/h	4500	5800
	Maximum Heating Capacity @-13F -25	Btu/h	/	/
	Maximum Heating Capacity @-22F -30	Btu/h	/	/
	Working Temperature Range		-5 -75	-5 -75
	Air Circulation(Max)	ft3 CFM	382	394
	Air Circulation(high)	ft3 CFM	341	365
	Air Circulation(medium)	ft3 CFM	294	312
Indoor AirFlow	Air Circulation(low)	ft3 CFM	247	253
	Indoor Sound Pressure(Max//H/M/L/Quiet)	dB (A)	42/39/37/35/32	42/39/37/35/32
	Model		DG13G1-27	DG13G1-27
	Qty		1	1
ndoor Fan Motor		W	46	46
	Capacitor	μF	4	4
	Speed(Hi/Med/Lo)	r/min	1100/940/800	1154/992/800
	Air Circulation(high) for Outdoor	ft3 CFM	1295	1295
Outdoor Airflow	Outdoor Sound pressure	dB (A)	53	53
		ure 201		1

9-12k System C Models

	FAC Model Set	ļ	FSHW091C	FSHW121C
Model	FAC Indoor Model	Unit	FAHSW09A1C	FAHSW12A1C
	FAC Outdoor Model		FSHSR09B1C	FSHSR12B1C
	Model		DG13Z1D-06	DG13Z1D-06
	Qty		1	1
Dutdoor Fan Motor	Output	w	36	36
	Capacitor	μF	/	/
	Speed (Hi)	r/min	850	880
	Rated Current	Cooling (A)	6.7	10.7
		Heating (A)	6.2	9.6
Electrical	MOP(Rating of Overcurrent Protective Device	A	25	25
	MCA(Minimum Circuit Ampacity)	А	14.6	15.6
	communication wire size and type		4 x 18AWG	4 x 18AWG
	Moisture Removal	pints/hr	1.9	2.5
	Refrigerant		R32	R32
	Refrigerant charge volume	oz	21.2	21.9
	Compressor type		Rotary	Rotary
	Compressor MFG		GMCC	GMCC
	Compressor model #		KSK75D15UDZ3	KSN98D34UEZ3
	Expansion Device		capillary	capillary
	Evaporator material		Copper tube an	d Aluminum Fin
Refrigeration	Condenser material		Copper tube an	d Aluminum Fin
	Connecting Pipe Diameter			
	Liquid Pipe	inch	1/4	1/4
	Gas Pipe	inch	3/8	3/8
	Max. Pipe Length (Total)	ft	65.6	65.6
	Max. Elevation (indoor units higher than outdoor unit)	ft	49.2	49.2
	Pre-charge Pipe Length	ft	24.6	24.6
	additional refigerant charge per foot after 25 ft	ounces/foot	0.22	0.22
	DIMENSIONS & WEIGHT			
		inches 1/8ths	33 7/8 ×11 2/8 ×8 4/8	33 7/8 ×11 2/8 ×8 4/8
	Dimension (WxHxD)	mm	860×285×216	860×285×216
		inches 1/8ths	36 5/8 ×15 ×11 2/8	36 5/8 ×15 ×11 2/8
Indoor Unit	Packing(LxHxW)	mm	930×380×285	930×380×285
		lbs	22.1	22.1
	Net Weight	kg	10	10
		lbs	26.5	26.5
	Shipping Weight	kg	12	12

9-12k System C Models

	FAC Model Set		FSHW091C	FSHW121C
Model	FAC Indoor Model	Unit	FAHSW09A1C	FAHSW12A1C
	FAC Outdoor Model		FSHSR09B1C	FSHSR12B1C
	Dimension (WxHxD)	inches 1/8ths	28 1/8 ×21 2/8 ×9 4/8	28 1/8 ×21 2/8 ×9 4/8
	Dimension (WXRXD)	mm	715x540x240	715x540x240
	Decking(LyLly)()	inches 1/8ths	32 5/8 ×23 1/8 ×13 3/8	32 5/8 ×23 1/8 ×13 3/8
Outdoor Unit	Outdoor Unit Packing(LxHxW)	mm	830x588x340	830x588x340
	Not Woight	lbs	52.9	57.3
	Net Weight	kg	24	26
	Shipping Weight	lbs	57.3	61.7
	Shipping Weight	kg	26	28
	One Set Loading Capacity (20GP/40GP/40'HQ)		113/234/266	113/234/266
Loading	Outdoor Unit Loading Capacity (20GP/40GP/40'HQ)		180/390/390	180/390/390
Loading	Indoor Unit Loading Capacity (20GP/40GP/40'HQ)		310/623/700	310/623/700
	Stack height (Stack Limit) Indoor Unit/Outdoor L	Jnit	8/4	8/4
	A2L Sensor	Y/N	NO	NO
	Fig	gure 201		

18-36k System D Models

	FAC Model Set		FSHW183D	FSHW243D	FSHW363D
Model	FAC Indoor Model	Unit	FAHFW18A3D	FAHFW24A3D	FAHSW36A3D
	FAC Outdoor Model		FSHSR18B3D	FSHSR24B3D	FSHSR36B3D
	Power Supply	V/ph/Hz			
	Energy Star Standard	Y/N	Y	Ν	Ν
	Energy Star -Cold Climate	Y/N	Ν	N	Ν
	Performance				
	Rated Capacity at 95	Btu/h	18000	24000	34600
	Cooling Capacity Range(MIN-MAX)	Btu/h	6500-19000	8000-25000	9300-36000
	Capacity at 115	Btu/h	16020	21360	30794
Cooling	Power Input	W	1506	2264	3660
Cooling	Current	А	6.4	10.0	16.0
	EER2 at 95	Btu/h/W	12.0	10.6	9.5
	SEER2	Btu/h/W	21.0	19.5	20.0
	Working Temperature Range		5 -118	5 -118	5 -118
	Rated Capacity at 47	Btu/h	18000	24000	35000
	Heating Capacity Range(MIN-MAX)	Btu/h	6500-19000	8000-25000	9600-37500
	Power Input	W	1349	2132	3160
	Current	А	8.1	9.5	14.2
	COP2 at 47	W/W	3.9	3.3	3.2
	COP @ 5F	w/w	2.4	1.9	2.0
	HSPF2(IV)	Btu/h/W	9.8	8.5	8.4
Heating	HSPF2(V)	Btu/h/W	8.2	8.0	8.2
	Rated Capacity Heating at 17°F -8.3	Btu/h	14800	21000	19200
	Maximum Heating Capacity @17F -8.3	Btu/h	14800	21000	19200
	Maximum Heating Capacity @5F -15	Btu/h	15000	18500	20000
	Maximum Heating Capacity @-5F -20.5	Btu/h	8200	13000	15600
	Maximum Heating Capacity @-13F -25	Btu/h	/	/	/
	Maximum Heating Capacity @-22F -30	Btu/h	/	/	/
	Working Temperature Range		-5 -75	-5 -75	-5 -75
	Air Circulation(Max)	ft3 CFM	647	706	1059
	Air Circulation(high)	ft3 CFM	588	647	1018
Indoor AirFlow	Air Circulation(medium)	ft3 CFM	482	559	883
	Air Circulation(low)	ft3 CFM	382	441	712
	Indoor Sound Pressure(Max//H/M/L/ Quiet)	dB (A)	48/45/41/39/36	50/48/43/41/39	52/48/43/39/38
	Model		ZWK465A00410	K1B310497	KD09060414
	Qty		1	1	1
door Fan Motor	Output	W	35	35	70
	Capacitor	μF	/	/	/
	Speed(Hi/Med/Lo)	r/min	1100/960/800	1200/1040/880	1060/930/810
	Air Circulation(high) for Outdoor	ft3 CFM	1471	1942	2590
Outdoor Airflow	Outdoor Sound pressure	dB (A)	56	60	60

18-36k System D Models

	FAC Model Set		FSHW183D	FSHW243D	FSHW363D
Model	FAC Indoor Model	Unit	FAHFW18A3D	FAHFW24A3D	FAHSW36A3D
	FAC Outdoor Model		FSHSR18B3D	FSHSR24B3D	FSHSR36B3D
	Model		ZW511A800002	DG13Z2D-06	DG13Z2D-06
	Qty		1	1	1
)utdoor Fan 1otor	Output	W	60	102	102
1000	Capacitor	μF	/	/	/
	Speed (Hi)	r/min	840	880	900
	Date d Ourseat	Cooling (A)	6.4	10.0	16.2
	Rated Current	Heating (A)	8.1	9.5	13.8
Electrical	MOP(Rating of Overcurrent Protective Device	А	20	35	40
	MCA(Minimum Circuit Ampacity)	A	14.5	21	25.8
	communication wire size and type		4 x 18AWG	4 x 18AWG	4 x 18AWG
	Moisture Removal	pints/hr	3.8	4.2	7.9
	Refrigerant		R32	R32	R32
	Refrigerant charge volume	oz	45.9	47.7	72.4
	Compressor type		Rotary	Rotary	Rotary
	Compressor MFG		GMCC	LANDA	GMCC
	Compressor model #		KSN140D33UFZ3	QXFS-B212ZX030A	KTM310D58UMT
	Expansion Device		capillary	capillary	capillary
	Evaporator material				
Refrigeration	Condenser material				
J	Connecting Pipe Diameter				
	Liquid Pipe	inch	1/4	3/8	3/8
	Gas Pipe	inch	1/2	5/8	5/8
	Max. Pipe Length (Total)	ft	98.4	98.4	98.4
	Max. Elevation (indoor units higher than outdoor unit)	ft	49.2	49.2	49.2
	Pre-charge Pipe Length	ft	24.6	24.6	24.6
	additional refrigerant charge per foot after 25 ft	ounces/foot	0.22	0.32	0.40
	DIMENSIONS & WEIGHT				
	Dimension (WxHxD)	inches 1/8ths	45 2/8 ×13 2/8 ×10 1/8	45 2/8 ×13 2/8 ×10 1/8	52 3/8 ×14 2/8 ×10 6/
		mm	1148×336×256	1148×336×256	1330×363×274
	Packing(LxHxW)	inches 1/8ths	47 7/8 ×16 1/8 ×13	47 7/8 ×16 1/8 ×13	56 1/8 ×15 4/8 ×18 1/
Indoor Unit		mm	1215×410×330	1215×410×330	1425×395×460
		lbs	32.0	34.2	40.8
	Net Weight	kg	14.5	15.5	18.5
	Chipping Waisht	lbs	37.5	39.7	50.3
	Shipping Weight	kg	17	18	22.8

18-36k System D Models

	FAC Model Set		FSHW183D	FSHW243D	FSHW363D
Model	FAC Indoor Model	Unit	FAHFW18A3D	FAHFW24A3D	FAHSW36A3D
	FAC Outdoor Model		FSHSR18B3D	FSHSR24B3D	FSHSR36B3D
	Dimension (WxHxD)	inches 1/8ths	31 7/8 ×23 ×11	33 7/8 ×25 5/8 ×12 2/8	35 3/8 ×29 4/8 ×13 3/8
		mm	810x585x280	860x650x310	900×750×340
	Dacking(LyLlyM)	inches 1/8ths	37 ×25 2/8 ×15 1/8	39 1/8 ×28 3/8 ×16 4/8	41 6/8 ×32 2/8 ×17 6/8
Outdoor Unit	Packing(LxHxW)	mm	940x640x385	995×720×420	1060×820×450
	Not Weight	lbs	86.0	101.4	121.3
	Net Weight	kg	39	46	55
	Chinning Waight	lbs	92.6	110.3	132.3
	Shipping Weight	kg	42	50	60
	One Set Loading Capacity (20GP/40GP/40'HQ)		73/151/173	60/127/145	42/86/104
Loading	Outdoor Unit Loading Capacity (20GP/40GP/40'HQ)		108/222/296	93/189/189	54/110/165
-	Indoor Unit Loading Capacity (20GP/40GP/40'HQ)		173/368/406	173/368/406	121/246/262
	Stack height (Stack Limit) Indoor Unit/Ou	utdoor Unit	8/4	8/4	8/3
	A2L Sensor	Y/N	NO	NO	NO
		F	igure 202		

Room Size Restriction

		Hei	ght of installation(ft and inch	nes)	
	6'	6' 6"	7' 2"	7' 10"	8' 2"
Refrigerant charge (oz)			Room (sq ft)		
64 oz.	71	64	58	53	51
65-71 oz.	78	71	64	59	57
72-77 oz.	86	78	71	65	62
78-85 oz.	94	85	77	71	68
86-92 oz.	102	92	83	77	74
	102 110	92 99	83 90	77 82	74 79
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un	110 117 it use the chart below to deter	99 105 mine the total refrigerant cha	90 96 arge for the unit. <u>If the total</u>	82 88 charge is less than 64 oz. th	79 85 ere is no room size
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un restriction. If the total c minimum square footage	110 117	99 105 mine the total refrigerant cha ne chart above. Use the total an be installed in. If rooms ar approved Friedrich A2L sens Pre-Charge w/ 25 ft of	90 96 arge for the unit. <u>If the total</u> charge, the height of the bot e connected by opening that for on the indoor unit allows Charge w/ 25-50 ft of	82 88 charge is less than 64 oz. th tom of the unit, and the char people can walk through bu for installation in space if e: Charge w/ 50-75 ft of	79 85 ere is no room size t above to determine the t with no door installed, kceeding room size. Charge- w/ add 75-100 f
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un restriction. If the total c minimum square footage	110 117 it use the chart below to deter harge is over 64 oz. refer to th e of the room the indoor unit ca	99 105 mine the total refrigerant cha ne chart above. Use the total an be installed in. If rooms ar approved Friedrich A2L sens	90 96 arge for the unit. <u>If the total</u> charge, the height of the bot e connected by opening that for on the indoor unit allows Charge w/ 25-50 ft of line set	82 88 charge is less than 64 oz. th tom of the unit, and the char people can walk through bu for installation in space if ex Charge w/ 50-75 ft of line set	79 85 ere is no room size t above to determine the t with no door installed,
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un restriction. If the total c minimum square footage those areas can be consi	110 117 it use the chart below to deter harge is over 64 oz. refer to th of the room the indoor unit ca dered one space. Installing an	99 105 mine the total refrigerant cha ne chart above. Use the total an be installed in. If rooms ar approved Friedrich A2L sens Pre-Charge w/ 25 ft of	90 96 arge for the unit. <u>If the total</u> charge, the height of the bot e connected by opening that for on the indoor unit allows Charge w/ 25-50 ft of	82 88 charge is less than 64 oz. th tom of the unit, and the char people can walk through bu for installation in space if ex Charge w/ 50-75 ft of line set	79 85 ere is no room size t above to determine the t with no door installed, teeeding room size. Charge- w/ add 75-100 f of line set
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un restriction. If the total c minimum square footage those areas can be consi	110 117 it use the chart below to deter harge is over 64 oz. refer to tl e of the room the indoor unit ca dered one space. Installing an - Outdoor Unit Model	99 105 mine the total refrigerant cha ne chart above. Use the total an be installed in. If rooms ar approved Friedrich A2L sens Pre-Charge w/ 25 ft of line set	90 96 arge for the unit. <u>If the total</u> charge, the height of the bot e connected by opening that for on the indoor unit allows Charge w/ 25-50 ft of line set Charge	82 88 charge is less than 64 oz. th tom of the unit, and the char people can walk through bu for installation in space if e: Charge w/ 50-75 ft of line set ge Oz	79 85 ere is no room size t above to determine the t with no door installed, kceeding room size. Charge- w/ add 75-100 f
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un restriction. If the total c minimum square footage those areas can be consi Indoor Unit Model FAHSW09A1C	110 117 it use the chart below to deter harge is over 64 oz. refer to tl of the room the indoor unit ca dered one space. Installing an - Outdoor Unit Model FSHSR09B1C	99 105 mine the total refrigerant cha ne chart above. Use the total an be installed in. If rooms ar approved Friedrich A2L sens Pre-Charge w/ 25 ft of line set 21.2	90 96 arge for the unit. <u>If the total</u> charge, the height of the bot e connected by opening that for on the indoor unit allows Charge w/ 25-50 ft of line set Charg 27.7	82 88 charge is less than 64 oz. th tom of the unit, and the char people can walk through bu for installation in space if ex Charge w/ 50-75 ft of line set ge Oz 33.2	79 85 tere is no room size t above to determine the t with no door installed, teceding room size. Charge- w/ add 75-100 f of line set N/A
86-92 oz. 93-99 oz. 100-106 oz. Prior to installing the un restriction. If the total c minimum square footage those areas can be consi Indoor Unit Model FAHSW09A1C FAHSW12A1C	110 117 it use the chart below to deter harge is over 64 oz. refer to tl e of the room the indoor unit ca dered one space. Installing an - Outdoor Unit Model FSHSR09B1C FSHSR12B1C	99 105 mine the total refrigerant cha ne chart above. Use the total an be installed in. If rooms ar approved Friedrich A2L sens Pre-Charge w/ 25 ft of line set 21.2 21.9	90 96 arge for the unit. <u>If the total</u> charge, the height of the bot e connected by opening that for on the indoor unit allows Charge w/ 25-50 ft of line set Charg 27.7 27.4	82 88 charge is less than 64 oz. th tom of the unit, and the char people can walk through bu for installation in space if ex Charge w/ 50-75 ft of line set ge Oz 33.2 32.9	79 85 ere is no room size t above to determine the t with no door installed, xceeding room size. Charge- w/ add 75-100 f of line set N/A N/A

Indoor Unit Clearances

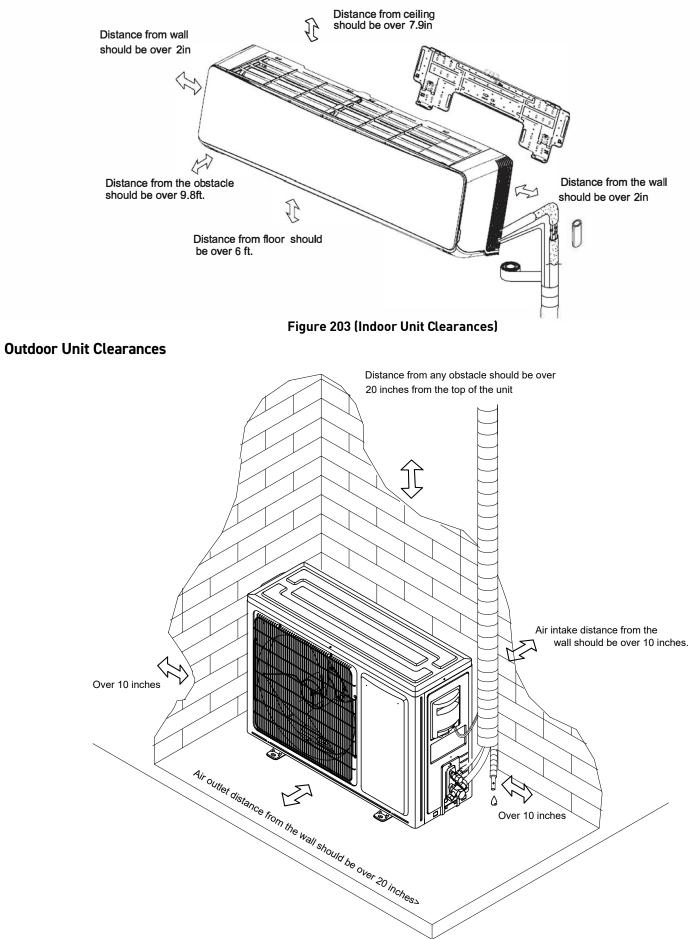
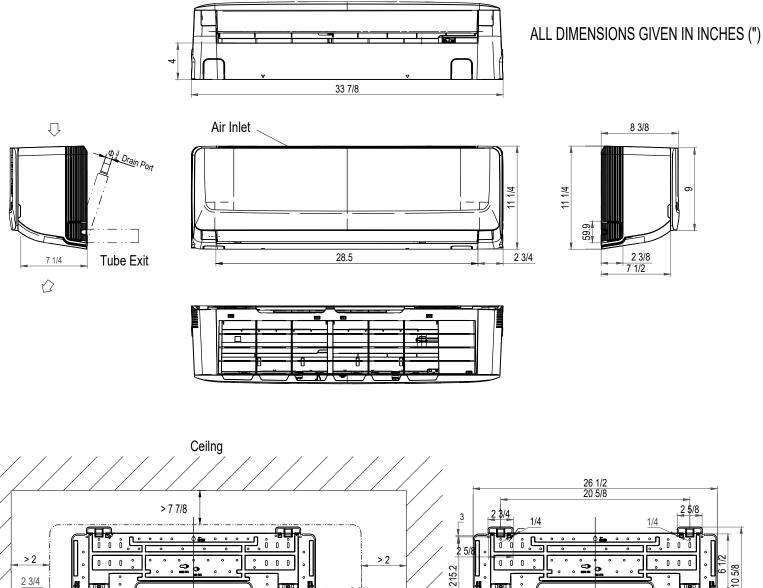



Figure 204 (Outdoor Unit Clearances)

Dimensions Indoor Unit

FAHSW09A1C, FAHSW12A1C, FAHFW09A3D, FAHFW12A3D

Right

13/4

ô

Н

n Ö Q

69.4

õ

Q 00

12 1/2

23 1/4

<u>2 3</u>/4

മ

4

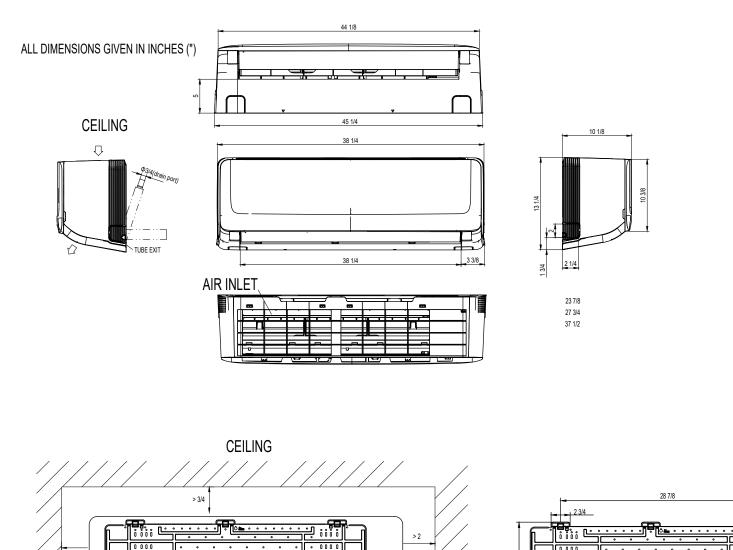
Left

õ

23 1/4

0

1 3/4


õ

0 0

2⁄5/8

6 5/8

Dimensions Indoor Unit FAHFW18A3D, FAHFW24A3D

2 3/4

6 1/2

9 5/8

~

RIGHT

• 22

27 3/4

с. Ц

4 1/2

7 5/8

LEFT

9-P

2 3/4

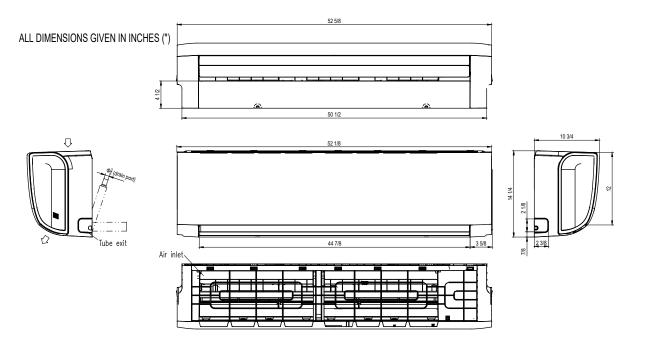
2 3/4

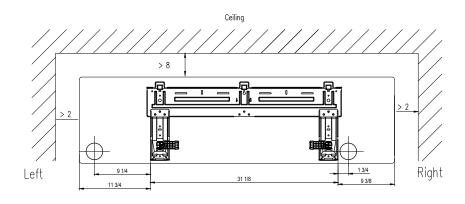
ייייי ניייי

000

0 0 0 0

2 <u>2</u>


۰

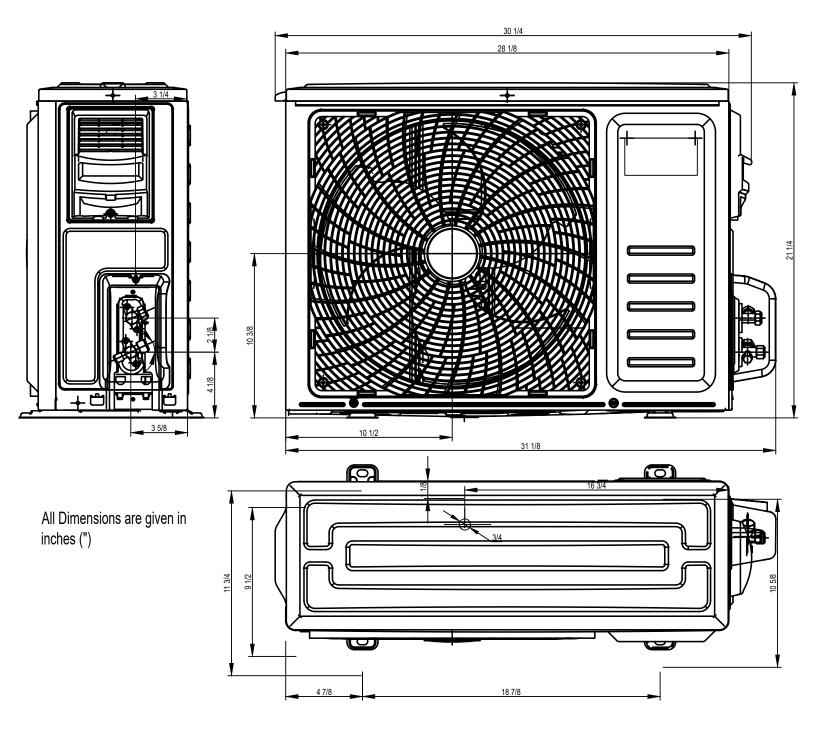
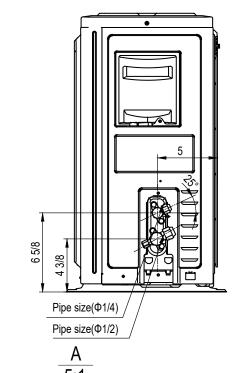
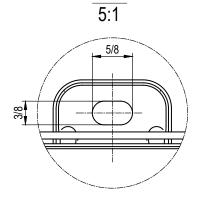
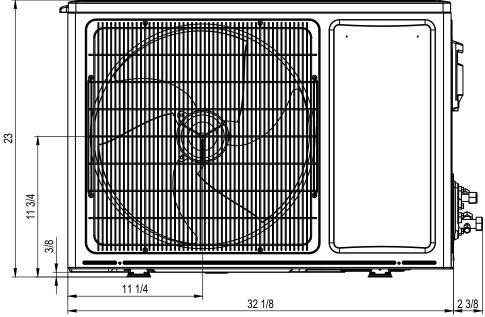

23 7/8

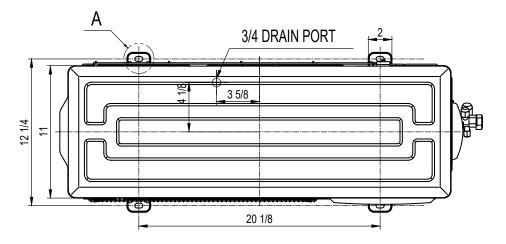
27 3/4

37 1/2

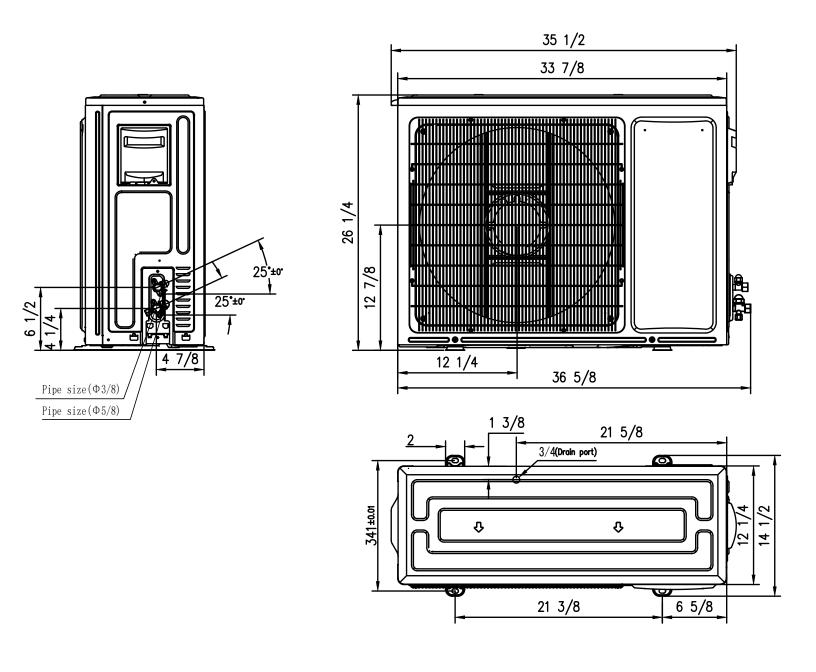
Dimensions Indoor Unit FAHSW36A3D

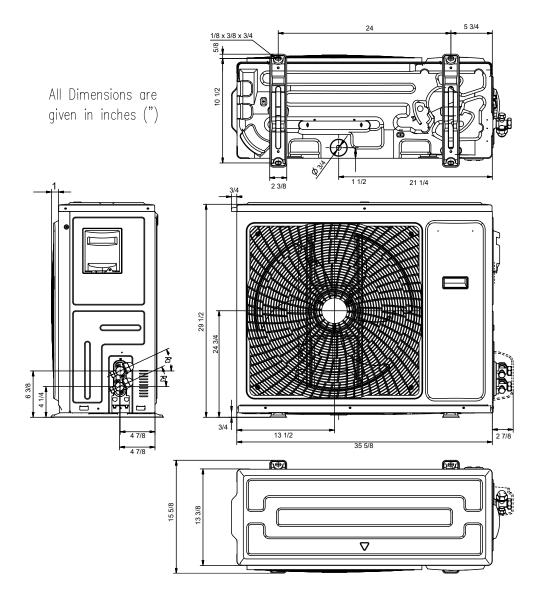
Dimensions Outdoor Unit FSHSR09B1C, FSHSR12B1C

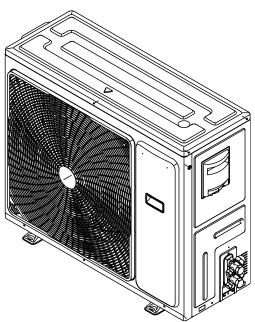






Figure 208 (9K-12k Indoor Unit Dimensions)

Dimensions Outdoor Unit FSHSR18A3D

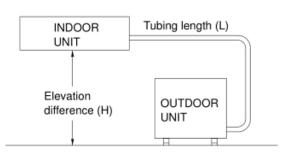






Dimensions Outdoor Unit FSHSR24A3D

Dimensions Outdoor Unit FSHSR36A3D



Pre-Installation Checkpoints

- Ensure there are no obstacles near the air outlet and air can be easily blown to every corner.
- Where piping and wall hole can be easily arranged.
- Keep the required space from the unit to the ceiling and wall according to the installation diagram on previous page.
- Where the air filter can be easily removed.
- Keep the unit and remote controller 3 ft or more apart from television, radio etc.
- Keep as far as possible from fluorescent lamps.
- Do not put anything near the air inlet to obstruct it from air absorption.
- Install on a wall that is strong enough to bear the weight of the unit.
- Install in a place that will not increase operation noise and vibration.
- Refer to Table 403 for max line set length and max elevation.
- Refer to the Outdoor Unit Installation and operation manual for piping requirements, refrigerant charging, and operational checks.
- In a Ceiling or Wall
- Make sure the ceiling/wall is strong enough to hold the unit's weight. It
 may be necessary to construct a strong wood or metal frame to provide
 added support.
- In a Room
- Properly insulate any tubing run inside a room to prevent "sweating" that can cause dripping and water damage to walls and floors.
- In Moist or Uneven Locations
 Use a raised concrete pad or concrete blocks to provide a solid, level
 foundation for the outdoor unit. This prevents water damage and abnormal
 vibration.
- In an Area with High Winds Securely anchor the outdoor unit down with bolts and a metal frame. Provide a suitable air baffle.
- In a Snowy Area (for Heat Pump-type Systems) Install the outdoor unit on a raised platform that is higher than drifting snow. Provide snow vents.
- When Connecting Refrigerant Tubing
 Use the flare method for connecting tubing.
 Apply refrigerant lubricant to the matching surfaces of the flare and union
 tubes before connecting them, then tighten the nut with a torque wrench
 for a leak free connection.
- Check carefully for leaks before starting the test run.
- When Servicing Turn the power OFF at the main power box (mains) before opening the unit to check or repair electrical parts and wiring. Keep your fingers and clothing away from any moving parts. Clean up the site after you finish, remembering to check that no metal scraps or bits of wiring have been left inside the unit being serviced.
- Ventilate any enclosed areas when installing or testing the refrigeration system. Escaped refrigerant gas, on contact with fire or heat, can produce dangerously toxic gas.
- Confirm upon completing installation that no refrigerant gas is leaking. If
 escaped gas comes in contact with a stove, gas water heater, electric room
 heater or other heat source, it can produce dangerously toxic gas.

Capacity	Pipe Size		Standard	Max. Elevation	Max. Length	Additional Refrigerant	
(Btu/h)	LIQUID	GAS	Length (ft)	H (ft)	L (ft)	(oz/ft)	
9k	1/4"	3/8"	25	50	66	.22	
12k	1/4"	3/8"	25	50	66	.22	
18k	1/4"	1/2"	25	50	100	.22	
24k	3/8"	5/8"	25	50	100	.32	
36k	3/8"	5/8"	25	50	100	.43	
	Table 403						

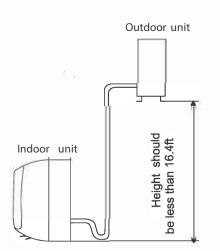
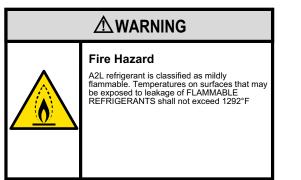
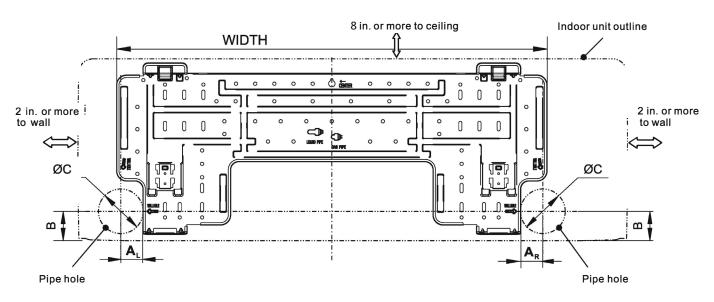



Figure 402

Install Mounting Plate


1. Installing the Mounting Plate

- Decide an installing location for the mounting plate according to the indoor unit location and piping direction.
- 2) Find the center of the mounting plate according to the mark on it. Then Install a screw to fix it preliminary.
- 3) Keep the mounting plate horizontally with a horizontal ruler or dropping line.
- 4) Drill holes of 1 1/4" in depth on the wall for fixing the plate.
- 5) Fix the mounting plate with as least 7 self-tapping screws. For some mounting plates with a holder in the middle, at least 8 screws are required. (Fig. C.4.1).
- Inspect if the mounting plate is well fixed. Then drill a hole for piping.

Note: It is recommended to install screw anchors for sheet rock, concrete block, brick and such type of wall.

Note: The center of the mounting bracket may be not the center of the indoor unit. Note: The shape of your mounting plate may be different from the one above, but installation method is similar.

• THE MOUNTING PLATE DIAGRAMS AND DIMENSIONS (Recommended)

For 7K/9K/12K Series Models, WIDTH: 26 5/8 in.

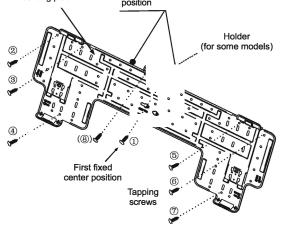
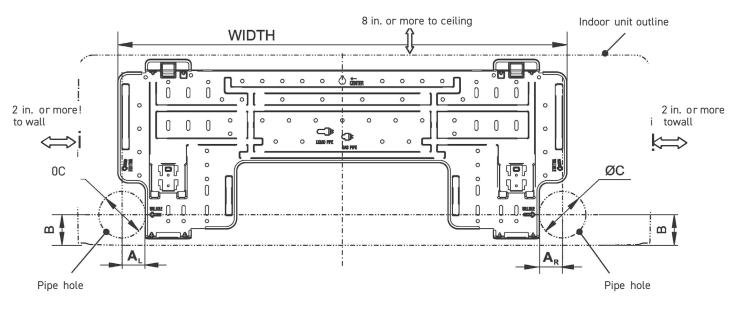
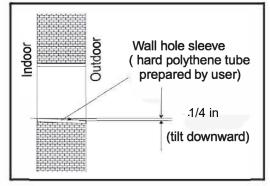



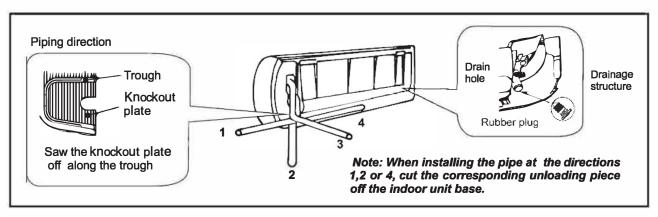
Fig. C.4.1

Install Mounting Plate


Drill Hole for Piping

Unit Model	Size A _L	Size A _R	Size B	Size C
Chirchiodol	in	in	in	in
7K/9K/12K Series	1 3/8 in	1 3/8 in	1 3/4 in	2 3/4 in
18K/24K Series	4 7/8 in	6 1/2 in	2 in	2 3/4 in

Table of Wall Hole Mounting size per Unit Size


2. Drill a Hole for Piping

- 1) Decide the position of hole for piping according to the location of mounting plate.
- 2) Drill a hole on the wall. The hole should tilt a little downward toward outside.
- 3) Install a sleeve through the wall hole to keep the wall tidy and clean. (Fig. C.5)

Piping Provisions

- 1) Put the piping (liquid and gas pipe) and cables through the wall hole from outside or put them through from inside after indoor piping and cables connection is complete to connect to the outdoor unit.
- 2) Decide whether to cut the knockout plate in accordance with the piping direction. (Fig. C.6.1)

Note:Drain hose can be installed on either side of the unit. If choosing both sides drainage connection, another proper drain hose is needed as there is only one drain hose attached to the unit. If choosing one side drainage connection, make sure the drain hole on the other side is well plugged.

- Put the piping (liquid and gas pipe) and cables through the wall hole from outside.
- 1 Cut the liquid pipe and gas pipe to the right length according to the position mark on the wall mounting plate (Fig. C.6.2). Ensure that the cut is flat (Fig. C.6.3).

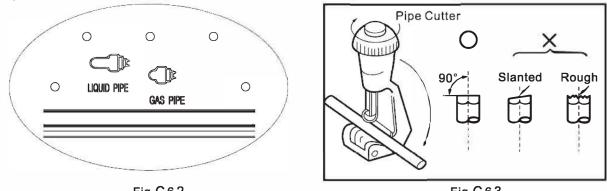


Fig.C.6.3

- 2 Remove burrs on the cutting edges. Keep the pipe outlet down to avoid getting the metal burrs into the pipe(Fig. C.6. 4).
- 3 \bigwedge Flare the pipes. Insert the pipe outlet into the copper nut before flaring the pipe. Ensure that the hole is flat with sound surface and even thickness. (Fig. C.6.5)

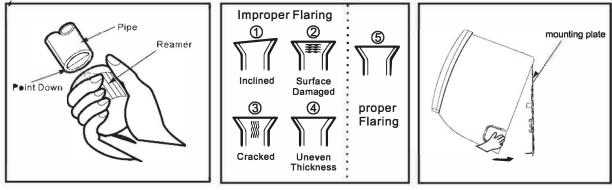
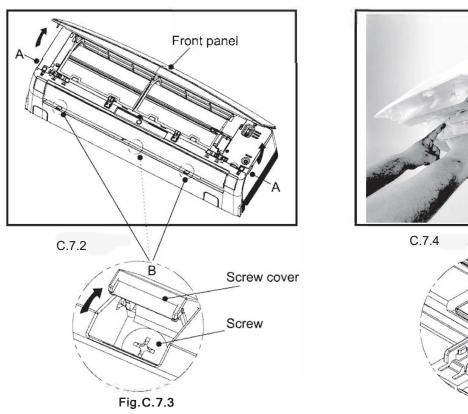
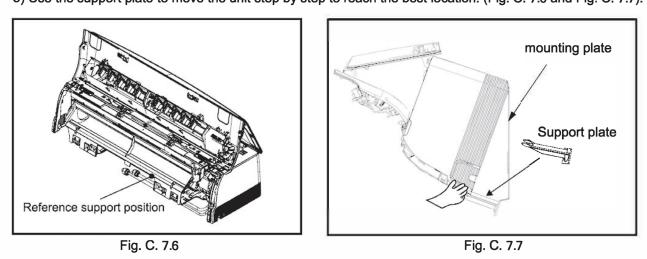



Fig. C.6. 4

Indoor Unit Installation

- 1 Hang the unit onto mounting plate
 - (Fig. C.7.1).
- 2) In the A position, open the front panel as shown in Fig. C. 7.2.
- 3) In the B position, open the screw covers as shown in Fig. C.7.3 and remove the screws. (Note: For some models, you need to remove 3 screws.)


4) In the C position, open the front shell as shown in Fig. C. 7.4. Then in the D position, push the baffles to prevent the front shell from falling as shown in Fig. C. 7.5.

5) Use the support plate to move the unit step by step to reach the best location. (Fig. C. 7.6 and Fig. C. 7.7).

Baffle

Fig.C.7.5

Note: The appearance of the model in this manual may differ from that of the air conditioner you have selected.

6) Connect the piping

Piping Connection:

Model

9K-18K

24K-36K

9K-12K

18K

24K-36K

36K

a.Before unscrewing the big and the small sealing caps, sealing cap with the finger until the exhaust noise stop the finger.

b.Connect indoor unit pipes with two wrenches. Pay special a to the allowed torque as shown below to prevent the pipes and flare nuts from being deformed and damaged.

c. Pre-tighten them with fingers at first, then use the wrend

Pipe size (inches)

GasSide(cl> 9.53 or 3/8)

GasSide(cl>12 or1/2)

GasSide(cl>16or 5/8)

Gas Side (ϕ 19 or 3/4)

LiquidSide (1/4)

Liquid Side (3/8)

If you don't hear the exhaust noise, please contact cus

ealing caps, press th st noise stops, and th Pay special attention rent the pipes, connect aged.	en loosen	Big sealing cap	Small sealing cap
use the wrenches.			
e contact customer se	rvice.	7	
Torque (ft lbs	Nut width	Min.thickness	
11-15ft-lbs	5/8"	0.02 "	- Est
22-26ft-lbs	7/8"	0.024"	Q. /
22-26ft-lbs	7/8"	0.024"	
37-41ft-Ibs	15/16"	0.024"	
44-48ft-lbs	1 1/8"	0.024"	7345
52-55ft-lbs	1 1/4"	0.039"	~ A
,			.0

Table C.7.8

7) After connecting piping as required, install the drain hose. Then connect the power cords. After connecting, wrap the piping, cords and drain hose together with thermal insulation materials(Fig. C.7.9-C.7.11).

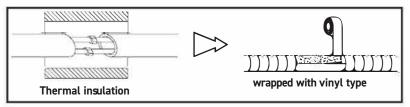
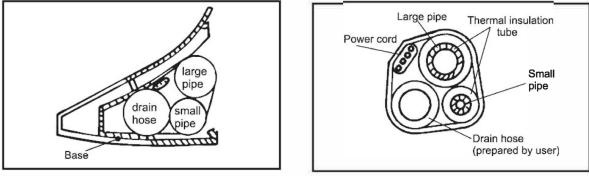
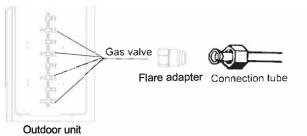


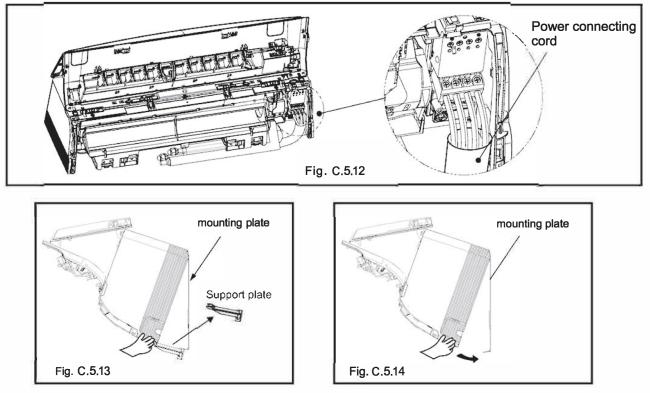
Fig. C.5.9

Note: Wrap the piping joints with thermal insulation materials and then wrap with a vinyl tape.

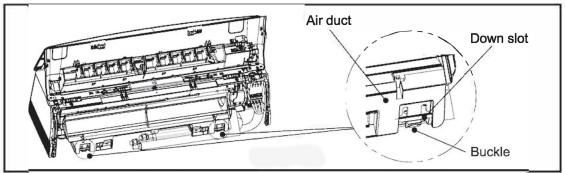



Fig. C.5.11

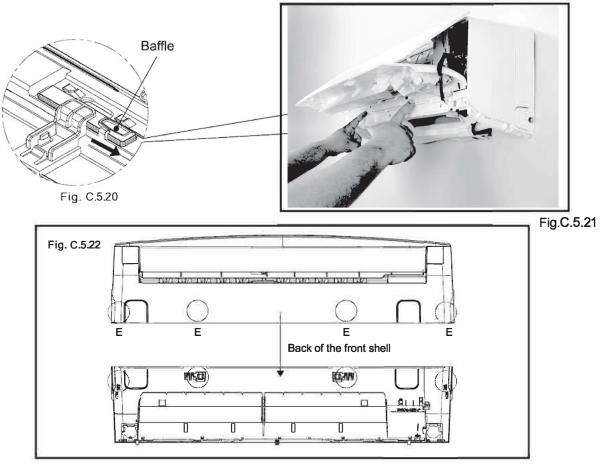
Note: Place the drain hose under the pipes. Note: Insulation material uses polythene foam over 1/4" (6) mm in thickness. Note: Drain hose Is prepared by user. Note: Note: The appearance of the model in this manual may differ from that of the air conditioner you have selected.


Indoor Unit Installation

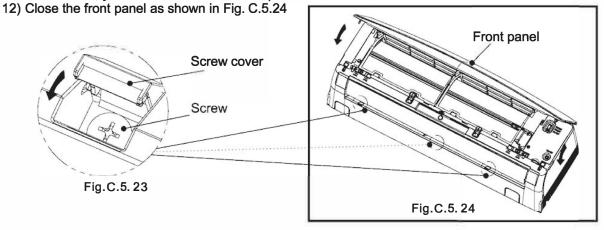
./


The 18K/24K indoor unit include the switch tie-in accessory only for 18K/24K indoor if required. It may switch 3/8" gas connection tube into 1/2" or 5/8" connection tube. It is installed outdoor unit.

8) Connect the power connecting cord (Fig. C.5.12).



 Remove the support plate as shown in Fig. C.5.13 Then move the unit step by step to reach the best installation, then press the 2 buckles of the air duct into 2 down slots of the mounting plate.(Fig. C.5.14 and Fig.C.5.15)



C.5.15

10) Pull the baffles as shown in Fig. C.5.20 Close the front shell as shown in Fig. C.5.21 . Then press the E position to fasten the front shell as shown in Fig. C.5.22

11) Install the screws and close the screw covers as shown in Fig. C.5.23 (Note: For some models, you need to install 3 screws.)

Note: The appearance of the model in this manual may differ from that of the air conditioner you have selected.

Electrical

Electrical Shock Hazard Always ensure power is disconnected before attempting to connect wires.

Model	Wire Diameter(AWG) Interconnecting Wire				
9k	14-4 AWG 600V THHN Stranded Wire				
12k	14-4 AWG 600V THHN Stranded Wire				
18k	14-4 AWG 600V THHN Stranded Wire				
24-36K	14-4 AWG 600V THHN Stranded Wire				
	Table E.1				

GROUNDING	Unit MUST be grounded from branch circuit to unit, or through separate ground wire. Be sure that branch circuit or general purpose outlet is grounded. Do NOT use an extension cord.		
ELECTRICAL DISCONNECT	If national or local electrical codes require an electrical disconnect for the indoor unit, use a 3 pole disconnect.		

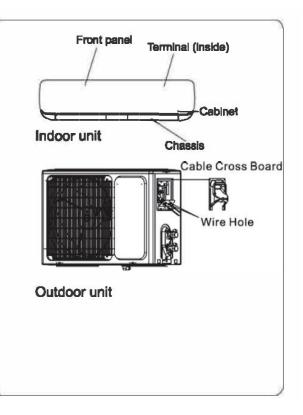


Figure E.2

Indoor Unit

Connect the power cord to the indoor unit by connecting the wires to the terminals on the control board individually in accordance with the outdoor unit connection. Note: For some models, it is necessary to remove the cabinet to connect to the indoor unit terminal.

•Outdoor Unit

1. Remove the cable cross board from the unit by loosening the screw. Connect the wires to the terminals on the control board individually per circuit diagram posted on inside of access door. Refer to Figure E.2.

2. Secure the power cord onto the control board with cable clamp.

3. Reinstall the cable cross board to the original position with the screw.

Indoor Unit Wiring Connection Diagram

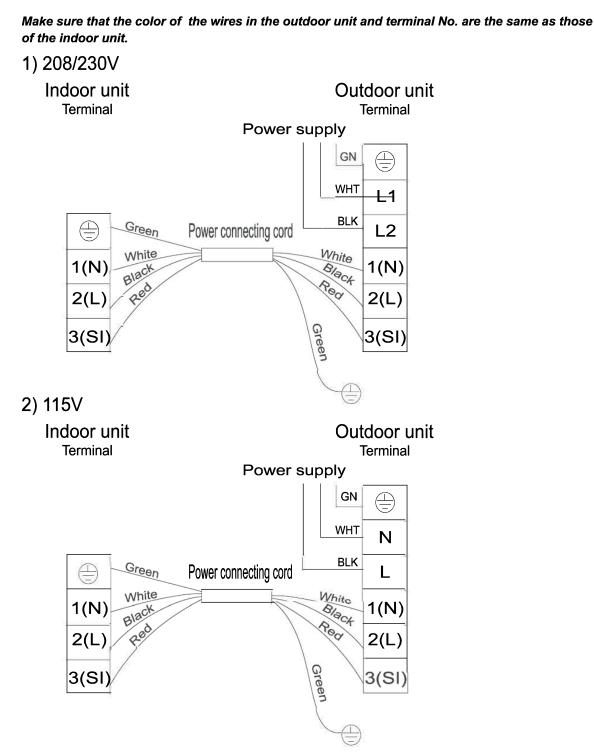


Diagram is reference only, actual product terminals should be followed.

Tools

Verify with tool manufacturers that all tools used during servicing of the refrigerant are non-sparking and can be used with A2L Refrigerants. No halide torches for leak testing.

Refrigerant monitors or detectors must be used to detect refrigerant in the work area.

- R-32 A2L Refrigerant Recovery System.
- Vacuum Pump rated for A2L refrigerant (capable of 300 microns or less vacuum.)
- Nitrogen bottle with purging and pressurizing capabilities up to 550 psi.
- Non-Sparking (Not Halide)Electronic Leak Detector rated for detecting A2L refrigerant.
- Digital refrigerant scale Refrigeration Gauges rated for A2L Refrigerants with temp scales for R-32 refrigerant.
- Gauge Manifold (Right handed threads).
- \cdot $\,$ A2L compatible Vacuum Gauge capable of 300 microns or less.
- Nitrogen regulator for purging and testing, rated to 800 psi. (Capable of low psi flow)
- Pipe tubing cutter.
- Refrigerant recovery cylinder. (Flammable A2L label)
- \cdot Ventilation fan.
- Class ABC fire extinguisher.
- Purge hose fittings
- Flaring tool

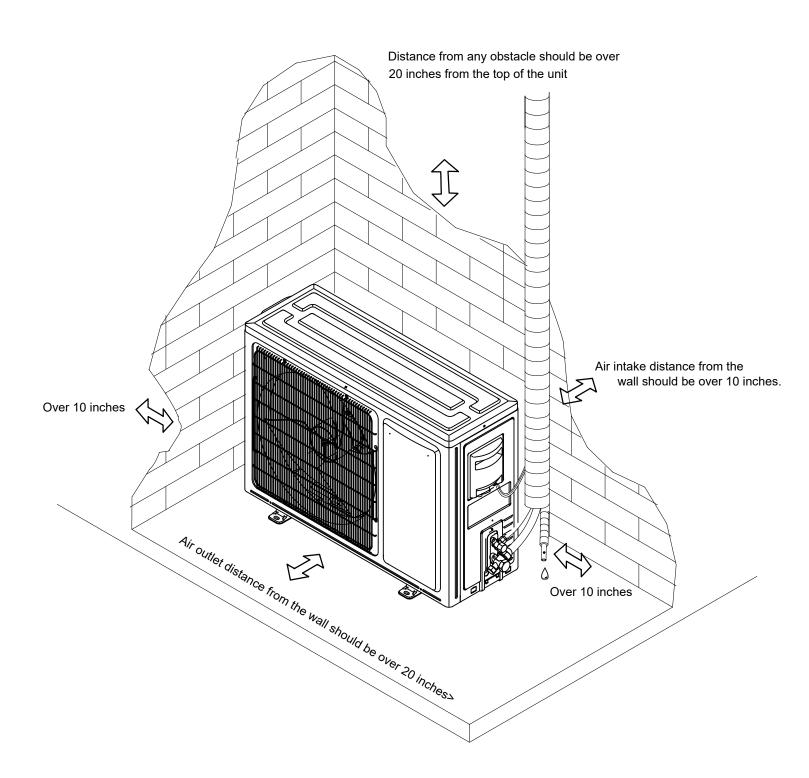
ABC Fire Extinguisher

Recovery Machine

Vaccum Pump

Nitrogen

Guage Manifold


Nitrogen Regulator

Vacuum Guage

Figure C.1 (Tools)

Clearances

Pre-Installation Checkpoints

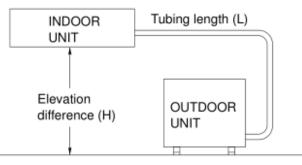
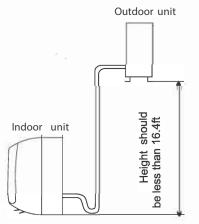
- Location is convenient to install and well ventilated.
- Avoid installing it where flammable gas could leak.
- Keep the required distance from walls and other obstacles.
- Keep the outdoor unit away from grease and debris.
- Avoid installing it by the roadside where there is a risk of muddy water.
- Install on a fixed base where it is not subject to increased operation noise.
- Ensure there is no blockage of the air outlet.
- Avoid installing under direct sunlight, in an aisle or sideway, or near heat sources and ventilation fans.
- Keep away from flammable materials, thick oil fog, and wet or uneven places.
- Outdoor unit comes pre-charged with refrigerant for 25 ft of line set.
- If the indoor unit is installed more than 16 ft in elevation below the outdoor unit, an oil trap should be installed every 16 ft in elevation drop.

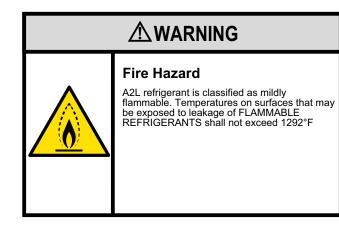
NOTE:

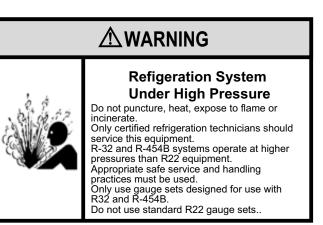
1. To avoid storing too much oil in the oil bend, the oil bend should be as short as possible.

2. The horizontal piping should be sloped down along the refrigerant flow direction, to bring the oil back to compressor. The slope should be between 1/200 and 1/250.

- Indoor unit can not be installed more than 50 feet in elevation above the outdoor unit.
- Refer to refrigerant Leak Check, Charging, and Evacuation section of the manual.


Figure C.3.1

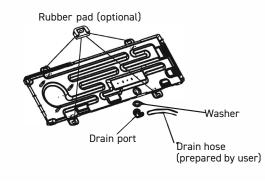


Outdoor unit is higher than indoor unit

Figure C.3.2

Model	Refrigerant Pre-Charge	Pipe Size		Standard	Max. Elevation	Max. Length	Additional Refrigerant
		LIQUID	GAS	Length (ft)	H (ft)	L (ft)	(oz/ft)
FSHSR09B1C	21.2 oz	1/4"	3/8"	25	50	66	.22
FSHSR12B1C	21.9 oz	1/4"	3/8"	25	50	66	.22
FSHSR18A3D	45.9 oz	1/4"	1/2"	25	50	100	.22
FSHSR24A3D	47.6	3/8"	5/8"	25	50	100	.32
FSHSR36A3D	72.4	3/8"	5/8"	25	50	100	.43
Table C.3.3							

leaks.


Install Condensate Drain

Install Condensate Drain for Outdoor Unit

The condensate drains from the outdoor unit when the unit operates in heating mode.

Install a drain port and a drain hose to direct the condensate water. Just install the drain port and rubber washer to the chassis of the outdoor unit, then connect a drain hose to the port. See Figure C.3.1. **CAUTION:** Condensate is subject to freezing.

Place under the leg pedestal

Figure C.4

Install Ground Pad or Wall Hangers

1. Refer to Section C.2 to identify proper unit location.

2. Follow all instructions provided by manufacturer for installing wall hangers rubber pad .

3. Verify the wall hangers or rubber pad can safely support the weight of the outdoor unit.

4. Verify the wall hangers or rubber pad is level and meets all outdoor dimensional clearance.

5. Attach with bolts and nuts tightly on a flat and strong floor.

If installed on the wall or roof, make sure to attach the support well to prevent it from shaking due to serious vibration or strong wind .

Florida wind load requirements state that outdoor unit must be anchored to concrete pad using four 3/8-in diameter power wedge bolt plus{or equivalent} with 1-in diameter fender washers. Anchor bolts must be embedded into 3000 PSI minimum concrete at a distance of 41/2- in from any concrete edge. The concrete thickness must exceed 1.5 times the anchor depth.

Piping Connections to Outdoor Unit

1. Remove service valve cover(if provided) to access the service valves and refrigerant ports.

2. Carefully bend and adjust length of refrigerant pipes to meet outdoor unit service valves connection with proper tools to avoid kinks.

3. Apply a small amount of refrigerant oil to the flare connection on the refrigerant pipe.

4. Properly align piping and tighten flare nut using a standard wrench and a torque wrench as shown in the indoor piping section.

5. Carefully tighten flare nuts to correct torque level referring to the following Torque Table:

"Pipe	"Nut Size	Tightening Torque			
diameter /inch"	/inch"	ft-lbs	N-m		
1/4	1/4	11 to 15	15 to 20		
3/8	3/8	22 to 26	30 to 35		
1/2	1/2	37 to 41	50 to 55		
5/8	5/8	44 to 48	60 to 65		
3/4	3/4	52 to 55	70 to 75		
Caution: Over tightening may damage flare connections and cause					

Table C.6

Specifications

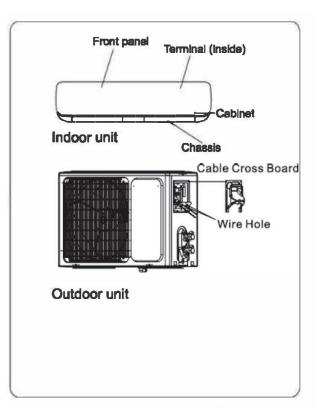
Model	Wire Diameter(AWG) Interconnecting Wire between Indoor and	Main Power Supply To Outdoor Unit				
	Outdoor Unit	Wire Size	MOP (Rating of Over current Device)	MCA (Minimum Circuit Ampacity)		
FSHSR09B1C	14-4 AWG 600V THHN Stranded Wire	Refer to MCA and local/	20A	14.6A		
FSHSR12B1C	14-4 AWG 600V THHN Stranded Wire	national codes	20A	15.4		
FSHSR18A3D	14-4 AWG 600V THHN Stranded Wire		20A	14.5A		
FSHSR24A3D	14-4 AWG 600V THHN Stranded Wire		35A	21A		
FSHSR36A3D	14-4 AWG 600V THHN Stranded Wire		40A	25.8A		
Table E.1						

Indoor Unit

Connect the power cord to the indoor unit by connecting the wires to the terminals on the control board individually in accordance with the outdoor unit connection.

Note: For some models, it is necessary to remove the cabinet to connect to the indoor unit terminal.

Outdoor Unit


1. Remove the cable cross board from the unit by loosening the screw. Connect the wires to the terminals on the control board individually per circuit diagram posted on inside of access door. Refer to Figure E.2.

2. Secure the power cord onto the control board with cable clamp.

3. Reinstall the cable cross board to the original position with the screw.

4. Use a recognized circuit breaker between the power source and the unit. [Refer to Table E.1. An electrical disconnect must be installed according to local and national codes. Refer to Table E.1.

WIRE SIZE	Use ONLY wiring size recommended by the National Electric Code (NEC) for single outlet branch circuit.
FUSE/CIRCUIT BREAKER	Use ONLY type and size fuse or HACR circuit breaker indicated on unit's rating plate. Proper current protection to the unit is the responsibility of the owner.
GROUNDING	Unit MUST be grounded from branch cir- cuit to unit, or through separate ground wire. Be sure that branch circuit or gen- eral purpose outlet is grounded. Do NOT use an extension cord.
ELECTRICAL DISCONNECT	Ensure an electrical disconnect is installed according local and national electrical codes

Wiring Diagrams

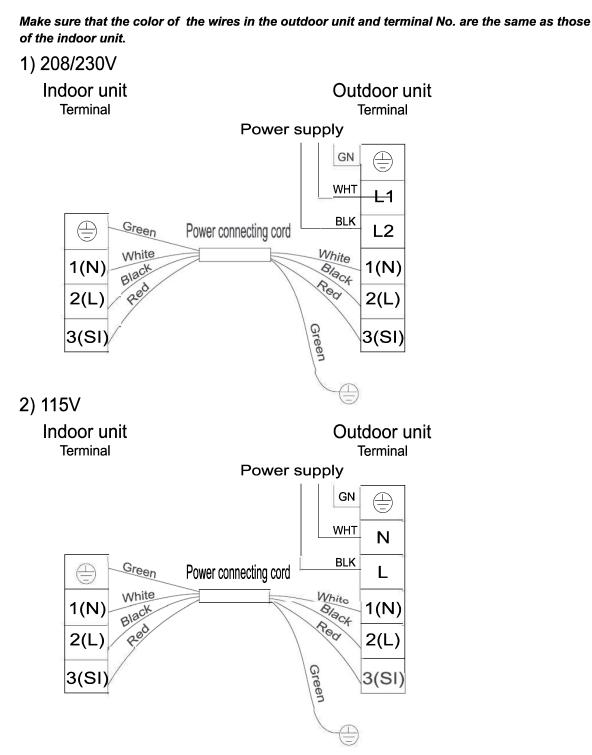


Diagram is reference only, actual product terminals should be followed.

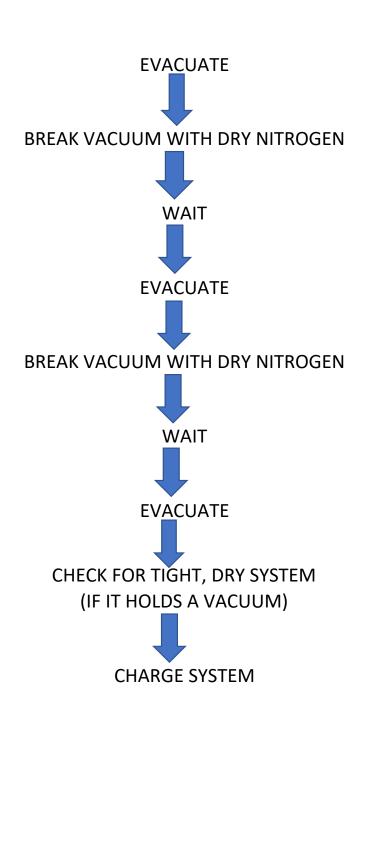
Leak Check, Evacuation, and Charging

A Warning:

No ignition sources: No person carrying out work in relation to a REFRIGERATING SYSTEM which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, should be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks.

Ventilated Area: Ensure that the area is in the open or that it is adequately ventilated before accessing the refrigerant in the system or conducting any hot work. A degree of ventilation shall continue during the period that the work is carried out. The ventilation should safely disperse any released refrigerant away from the work area or external to building envelope.

During Repairs To Sealed Components: All power must be removed from the equipment being worked on prior to any removal of sealed covers, etc. If it is absolutely necessary to have an electrical supply to equipment during servicing, then a constant leak detector shall be located at the most critical point to warn of a potentially hazardous situation.


Checks And Repairs To Electrical Devices:

- Repair and maintenance to electrical components shall include initial safety checks and component inspection procedures. If a fault exists that could compromise safety, then no electrical supply shall be connected to the circuit until it is satisfactorily dealt with. If the fault cannot be corrected remove power supply to unit. **DO NOT OPERATE.**
- Initial safety checks shall include:
 - •That capacitors are discharged: this shall be done in a safe manner to avoid possibility of sparking;
 - $\cdot That \ no \ live \ electrical \ components \ and \ wiring \ are \ exposed \ while \ charging, recovering or purging the system;$
 - •Verify unit is properly grounded.
- Particular attention shall be paid to the following to ensure that by working on electrical components, the casing is not altered in such a way that the level of protection is affected. This shall include damage to cables, excessive number of connections, terminals not made to original specification, damage to seals, incorrect fitting of glands, etc.
- Ensure that the apparatus is mounted securely.
- Ensure that seals or sealing materials have not degraded to the point that they no longer serve the purpose of preventing the ingress of flammable atmospheres. Replacement parts shall be in accordance with the manufacturer's specifications.

The following is a list of important considerations when working with R-32 equipment:

- R-32 pressure is similar to R-410A and approximately 60% higher than R-22 pressure.
- R-32 cylinders must not be allowed to exceed 125°F, they may leak or rupture.
- R-32 must never be pressurized with a mixture of compressed air, it may become MORE flammable.
- Servicing equipment and components must be specifically designed for use with R-32 and dedicated to prevent contamination.
- Manifold sets must be equipped with gauges capable of reading 750 psig (high side) and 200 psig (low side), with a 500-psig low-side retard.
- Gauge hoses must have a minimum 750-psig service pressure rating.
- Recovery cylinders must have a minimum service pressure rating of 400 psig, (DOT 4BA400 and DOT BW400 approved cylinders).
- POE (Polyol-Ester) lubricants must be used with R-32 equipment.
- To prevent moisture absorption and lubricant contamination, do not leave the refrigeration system open to the atmosphere for extended periods of time.
- If unit refrigerant is low, recover the refrigerant, evacuate, and recharge unit to nameplate amount.

- If there is any amount of refrigerant in the system charge from the low side.
 - Always charge by liquid inverted.

39

Leak Check, Charging And Triple Evacuation

Friedrich requires all installations are Leak Checked and Evacuated in accordance to the "triple evacuation" process. This process promotes a dry tight refrigeration system before opening the service valves. It recommended that a single port refrigeration manifold and hoses rated over 750 psi be used. Refrigeration hose valves, along with a vacuum pump and micron gauge, must be used to ensure the system can be vacuumed and held under 500 microns. Check all equipment and hoses for proper usage and leaks before beginning.

1. 1st Nitrogen Pressure Test:

Ensure all refrigeration connections are properly flared, secured, and torqued to their respective settings.

Pressurize the system with nitrogen to 550 psi. Soap all connections with an approved refrigerant leak detection solution.

The pressure in the system must hold for one hour respective to the environmental conditions and should not vary less than 550psi. If pressure can not be adequate held, check integrity of flares and torque specifications. Once pressure is held adequately, purge the nitrogen charge to system pressure of 5-10 psi. DO NOT RETURN TO ATMOSPHERIC PRESSURE.

2. 1st Vacuum Micron Test:

Connect hoses and vacuum pump to the outdoor unit as shown in Fig. 436. Start the vacuum pump and vacuum to 1000 microns. Close the valve to the vacuum pump and check for micron rise for 15 minutes. If microns rise to near atmospheric pressure, there is a potential leak; repeat step 1. If microns rise over 5000, the system is very wet and will require further nitrogen purges.

3. 2nd Nitrogen Break:

Once the system holds below 5000 microns, reconnect the nitrogen tank break the system vacuum with 30-50 psi of nitrogen. Wait 5 minutes, then purge to 5-10 psi. DO NOT RETURN TO ATMOSPHERIC PRESSURE.

4. 2nd Vacuum Micron Test:

Reconnect vacuum pump and gauge and begin evacuation. Vacuum system to 500 microns. Close vacuum valve and check for micron rise. Vacuum should hold under 1000 microns. Repeat steps 3 and 4 until achieved.

5. 3rd Nitrogen Break:

Once the system holds below 1000 microns, reconnect the nitrogen tank break the system vacuum with 30-50 psi of nitrogen. Wait 5 minutes, then purge to 5-10 psi. DO NOT RETURN TO ATMOSPHERIC PRESSURE.

6. 3rd Final Vacuum Micron Test:

Reconnect vacuum pump and gauge and begin evacuation. Vacuum system to 300 microns. Close vacuum valve and check for micron rise. Vacuum should hold under 500 microns. Repeat steps 3 and 4 until achieved. Once held under 500 microns, the system is considered dry and tight. 7. Charging the system:

Unscrew Service Valve Caps to expose the inner hexagon head. Use an allen-head spanner or service wrench with appropriate adapter to release the refrigerant into the system. If the calculated line set length is over 25 ft, weight in the additional charge with an approved refrigerant scale as needed. Refer to Table G.1.

Capacity	Refrigerant	Pipe Size		Standard	Max.	Max. Length	Additional
(Btu/h)	Pre-Charge	LIQUID	GAS	Length (ft)	Elevation H (ft)	L (ft)	Refrigerant (oz/ft)
FSHSR09B1C	21.2 oz	1/4"	3/8"	25	50	66	.22
FSHSR12B1C	21.9 oz	1/4"	3/8"	25	50	66	.22
FSHSR18A3D	45.9 oz	1/4"	1/2"	25	50	100	.22
FSHSR24A3D	47.6	3/8"	5/8"	25	50	100	.32
FSHSR36A3D	72.4	3/8"	5/8"	25	50	100	.43
Table G.2							

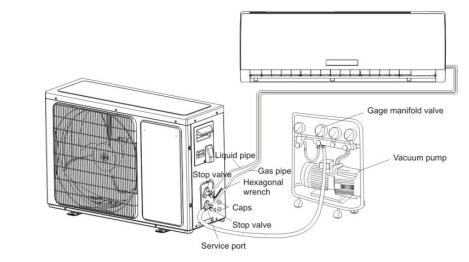


Figure G.3

Startup And Operation

Present the owner or operator of the equipment with the Installation & Operation Manual, all accessory installation instructions, and the name, address, and telephone number of the Authorized Friedrich Warranty Service Company in the area for future reference if necessary. Inspect the unit for any damage to the coils and tubing that could cause a leak.

NOTICE

This unit is certified to operate in cooling mode under these maximum conditions. Any operation beyond these conditions may result in intermittent operation.

Indoor temperature: 90 °F (45% relative humidity)

Outdoor temperature: 110 °F (25% relative humidity)

If unit is heat pump equipped, it is certified to operate in heating mode under these maximum conditions. Any operation beyond these conditions may result in intermittent operation.

Indoor temperature: 80 °F (humidity does not affect operation) Outdoor temperature: 75 °F (60% relative humidity)

Test Operation

System Checks

1. Conceal refrigerant pipes where possible.

2. Make sure drain hose slopes downward along entire length at a slope of 1/4" (inch) per '(foot).

3. Ensure all refrigerant pipes and connections are properly insulated.

4. Fasten pipes to outside wall, when possible.

5. Seal and weatherproof wall hole which the interconnecting wires and refrigerant pipes pass through.

Perform test operation after completing gas leak and electrical safety check.

1. Turn on electrical disconnect to outdoor unit.

 Push the "ON/OFF" button on Remote Controller to begin testing, or if remote is not available press auto start switch on indoor unit.
 Push MODE button, select COOLING, HEATING, FAN mode to confirm all functions.

Indoor Unit

- 1. Do all Remote controller's buttons function properly?
- 2. Do the display panel lights work properly?
- 3. Does the swing louver function properly?
- 4. Does the drain work?

Outdoor Unit

1. Push the mode button to COOL and adjust the room setting to 61 °F. Wait up to 3 minutes for compressor time delay. Does compressor and outdoor fan turn on in cooling mode?

2. Push the mode button to HEAT and adjust the room setting to 85 °F(Wait up to 3 minutes for compressor time delay. Does compressor and outdoor fan turn on in heat mode?

Unit protection will prevent the unit from restarting for 3 minutes if operations stops, or modes are changed.

Preheat

At the beginning of the HEATING operation, the airflow from the indoor unit is discharged 2-5 minutes later.

Defrost

In HEATING operation the appliance will defrost (de-ice) automatically to raise efficiency. This procedure usually lasts 2-10 minutes. During defrosting, fans stop operation.

After defrosting completes, it returns to HEATING mode automatically.

No.	Items to be checked	Possible malfunction			
1	Has the unit been	The unit may drop, shake or			
'	installed correctly?	emit noise.			
2	Have you done the	It may cause insufficient cooling			
2	refrigerant leakage test?	(heating) capacity.			
3	Is heat insulation of	It may cause condensation and			
3	pipeline sufficient?	water dripping.			
4	Is water drained well?	It may cause condensation and			
	le the veltere of newer	water dripping.			
	Is the voltage of power	14			
5	supply according to the	It may cause malfunction or			
	voltage marked on the	damage the parts.			
	nameplate?				
6	Is electric wiring and	It may cause malfunction or			
0	pipeline installed correctly?	damage the parts.			
	Is the unit grounded				
7	securely?	It may cause electric leakage.			
	Does the power cord	It may cause malfunction or			
8	follow the specification?	damage the parts.			
	Is there any obstruction	It may cause insufficient cooling			
9	in air inlet and air outlet?	(heating).			
	Are the dust and	(
	debris caused	It may cause malfunction or			
10	during installation	damaging the parts.			
	removed?				
	The gas valve and liquid	14			
11	valve of connection pipe	It may cause insufficient cooling (heating) capacity.			
	are open completely?				

Operation Range (Cooling and Heating)

Temperature		Cooling operation	Heating operation		
Indoor temperature	Max	90°F	81°F		
	Min	70°F	45°F		
outdoor temperature	Max	115°F	75°F		
	Min	5°F	-4°F		
Figure 301					

*Optimum performance will be achieved within these operating temperature. If air conditioner is used outside of the above conditions, the protective device may trip and stop the appliance.

When relative humidity is above 80%, if the air conditioner runs in COOLING or DRY mode with door or window opened for a long time, dew may drip down from the outlet.

OPFRATION

०%०%**•● 📼

88 % 🖓 88:88

(1) (C A & @ & #

Δ

(I)

IMER OF

DIMME

八

TIMER OFF

R

CLOCK

QUIET

Remote Control

The remote controller transmits signals to the system.

SMART

Used to enter fuzzy logic operation directly, regardless of the unit is on or off.

POWER

The appliance will be started when it is energized or will be stopped when it is in operation, if you press this button.

SURGE

Used to start or stop the fast cooling/heating. (Fast cooling operates at high fan speed with 61°F set temp automatically ; Fast heating operates at auto fan speed with 86°F set temp automatically)

IFEEL

Used to set IFEEL mode operation. Press it once, the IFEEL function will be started. Press it again, the IFEEL function will be shut off.

(∕≽ SWING

Used to stop or start vertical adjustment louver swinging and set the desired up/ down airflow direction.

CLOCK

Used to set the current time.

OUIET

桊

00

SF

.

৾৾৽

Used to set or cancel Quiet Mode operation. When the air conditioner is in standby, and the mode of remote controller is in Cooling or Dry (except Super mode), press this button for about 5 seconds once to start Clean mode, then the indicator " from " will display on LCD.

h

Ir	ndication symbols on LCD: Used to start or stop 46°HEAT mode.									
	Cooling indicator	1	Auto fan speed	Ċ	Sleep 1 indicator	Ģ	Quiet indicator	$\widehat{\bullet}$	Signal tra	ansmit
)	Dry indicator	૽ૺૺૺૺૺૺૺ	Higher fan speed	Ċ	Sleep 2 indicator	0	Smart indicator			ower indicator
)	Fan only indicator	; ;	High fan speed	Ċ	Sleep 3 indicator		Economy indicator	OFF	38:88	Display set timer Display current time
I	Heating indicator	्रि	Medium fan speed	(::	Sleep 4 indicator	•	Surge indicator	88] 🖡 Disp	lay temperature
B°	46°Heat indicator	2	Low fan speed		Lock indicator	Æ	Clean indicator	% F	ower cor	trol indicator
	Lower fan speed									

(TIMER ON) + (TIMER OFF) LOCK

🛆 **+** [≽ 46°HEAT

Used to start or stop LOCK mode.

Note: Each mode and relevant function will be further specified in following pages.

TEMP + -

Used to adjust the room temperature and the timer, also real time.

MODE

Press this button to select the operation mode.

FAN

Used to select fan speed in sequence auto, higher, high, medium, low or lower.

SLEEP

Used to set or cancel Sleep Mode operation.

Used to stop or start Horizontal adjustment louver swinging and set the desired left/right airflow direction.

TIMER ON

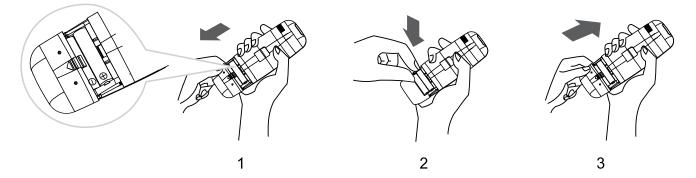
Used to set or cancel the timer operation. TIMER OFF

Used to set or cancel the timer operation.

ECONOMY

Used to set or cancel Economy Mode operation.

When in Cooling mode (except Super mode), press this button for about 5 seconds once to start Power control mode, press this button for about 5 seconds once again to stop it

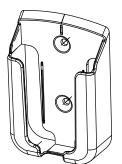

DIMMER

When you press this button, all the display of indoor unit will be closed. Press any button to resume display.

Remote Control

How to Insert the Batteries

- 1. Remove the battery cover according to the arrow direction.
- 2. Insert new batteries making sure that the (+) and (-) of battery are matched correctly.
- 3. Reattach the cover by sliding it back into position.


Note:

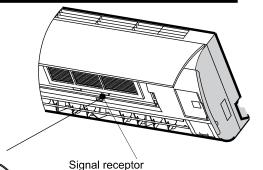
• Use 2 LR03 AAA(1.5volt) batteries. Do not use rechargeable batteries. Replace batteries with new ones of the same type when the display becomes dim.

• Storage and Tips for Using the Remote Controller


The remote controller may be stored mounted on a wall with a holder.

Note: The remote controller holder is an optional part.

How to Use

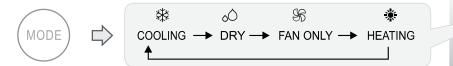

To operate system, point remote directly at unit (audible beep should sound when buttons are pressed). The remote can operate system up to 23ft away without interference.

▲ CAUTIONS

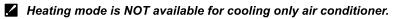
For appropriate signal transmission between remote controller and indoor unit, keep the signal receiver away from the following items:

- Direct sunlight or other strong lights or heat
- Flat panel television screen or other electrical appliances that
 react to the remote controller

Additionally, the air conditioner will not operate if curtains, doors or other materials block the signals from the remote controller to the indoor unit. If the signal may not be transmitted properly, either move these materials or consult your local dealer.


Operation modes

Selecting mode


Press Mode Result :

button

The operation modes changed in sequence:

FAN mode

Press S

button
 The fan speed is changed in sequence:

At "FAN ONLY" mode, the "AUTO" is not available. At "DRY" mode, Fan speed is set at "AUTO" automatically, "FAN" button is ineffective in this case.

Setting temperature

Press button once	Range of availabl	e set temperature
Result : Raise temperature setting by 1°F	*HEATING, COOLING	61°F~86°F
Press (button once	DRY	19°F~45°F
Result : Lower temperature setting by 1°F	FAN ONLY	unable to set
	*Note: Heating mode is NOT a	vailable for cooling or

*Note: Heating mode is NOT available for cooling only models. *Note: At "Dry" mode, a decrease or rise of up to 45°F can be set with Remote controller if you still feel uncomfortable.

Turning on

Press

button.

Result : The RUN indicator of the indoor unit lights up.

SWING, SMART, TIMER ON, TIMER OFF, CLOCK, 46° HEAT, SLEEP and SURGE operation modes will be specified in the following pages.

- Changing modes during operation, sometimes the unit does not response at once. Wait 3 minutes.
 - Ouring heating operation, air flow is not discharged at the beginning. After 2—5 minutes, the air flow will be discharged until temperature of indoor heat exchanger rises.
 - Wait 3 minutes before restarting the appliance.

Airflow direction control

Vertical airflow(Horizontal airflow) Blade angle will adjust based on remote setting.

Operation mode	Direction of airflow
COOLING, DRY	horizontal
*HEATING, FAN ONLY	downward

(⊨

(≽

.//\

낀

*Heating mode is only available for heat pump models.

Vertical airflow control (with the remote controller)

Use remote to adjust blade/louver angles.

Press " \Rightarrow " button once.

Result : The vertical adjustment louver will swing up and down automatically.

Press " (\succeq) " button again .

Result : The louvers swing to a suitable angle as desired.

⊢ ー ー ー ー ー I♦ Horizontal a			
Use remote to	o adjust blade/louver angles.		
i Press " <u>八</u> "	button once.	((≒	(小)
Result :	The horizontal adjustment louver will swing left and right automatically.		
 Press " <u>八</u> "	button again .		
Result :	The louvers swing to a suitable angle as desired.		
1			
 •			

Remote Control

OPERATION

SMART mode(Multizone system not capable of auto change over function)

How to set SMART mode?

Press the

button.

Result: Enters **SMART** mode(auto change over operation) regardless of the units ON/OFF status. Temperature and fan speed are automatically set based on actual room temperature.

Heat pump models

Indoor temperature	Operation mode	Target temperature
70°F or below	HEATING	72°F
70°F-73°F	FAN ONLY	
73°F-79°F	DRY	Room temperature decrease 2°F after operate for 3 minutes
Over 79°F	COOLING	79°F

. SMART mode will not work when system is set to SURGE Mode.

./ Pressing MODE will cancel SMART mode.Pressing MODE will cancel SMART mode. Note: Temperature, airflow and direction are controlled automatically in SMART mode. However, you can choose an offset of -7 to 7 if SMART mode preset is not comfortable.

What you can do in SMART mode?

Issue	Button	Adjust
Not enough air flow in SMART mode.	HAN SPEED	Indoor fan speed alternates among Highest, High, Medium, low and Lowest each time when this button is pressed.
Airflow is not directed properly.		Pressing SWING button once will change blade/louver position, pressing SWING again will stop swing function.

How to cancel the SMART mode?

MODE Press the button.

Result: The SMART mode will be cancelled.

Remote Control

CLOCK button

• How to adju	st the real time?			
1. Press CLOCI Result :	button. The time flashes on the LCD.	CLOCK TIMER ON TIMER OFF QUIET DIMMER ECONOMY	\Rightarrow	* 00:5 ' 4 58 *
2. Press	and vertices buttons. Once to increase or decrease the tir One and a half seconds to increase or by 10 minute. For a longer time to increase or dec	decrease the time setting		TEMP. SURGE TEMP. TEMP. TEMP.
3. Press CLOCI Result : CLEAN	^K button again. The real time is set. mode	CLOCK TIMER ON TIMER OFF QUIET DIMMER ECONOMY		* 00:51 7 58

When the unit is in standby, and the mode of remote controller is in Cooling or Dry , press (DULT) button for 5 seconds once to start Clean mode , then the indicator " fm " will display on LCD.

- Clean mode is ineffective in SUPER mode.
- Press ON/OFF or SMART or MODE button can exit the Clean mode, then the indicator "m" will disappear.
- After the clean process finish, the air conditioner will return to Cooling or Dry as preset, while the indicator" from on remote controller will display for about 30 mins.

Remote Control

Power control mode

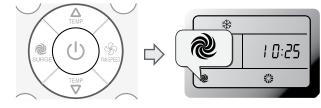
When in Cooling mode, press *ECONOMY* button for about 5 seconds once to start Power control mode (at low fan speed), press this button for about 5 seconds once again to stop it.

When the appliance in the Power control mode, press (ECONOMY) button once by once

Result : The operation modes changed in sequence:

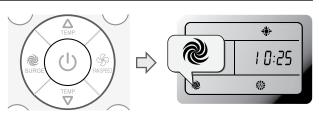
- Power control mode is ineffective in SURGE or ECONOMY mode.
- Except for the button of Swing, Dimmer, Ifeel, Clock, Time on, Time off, Fan, press the other buttons can exit the Powercontrol mode, and the indicator "%" will disappear.
- When start the Power control mode, the fan will automatically enter low wind speed, but you can change the wind speed by press the Fan button.

SURGE mode


SURGE mode is used to start or stop fast cooling or heating.

SURGE mode can be set when the appliance is in operation or in standby.

In SURGE mode, you can set airflow direction or timer.


• How to set SURGE mode?

Press SURGE	button in cool mode.
Result :	At higher fan speed ,the set temperature
	automatically to 61°F

Press surge button in heat mode.

Result : At auto fan speed ,the set temperature automatically to 86°F

How to cancel SURGE mode?

Press SURGE, MODE, FAN, ON/OFF, SLEEP or TEMPERATURE SETTING button.

Result : Display will return to previous mode Exit from SURGE mode.

Note:

SMART button is not available in SURGE mode. Surge mode will operate for 15 minutes unless user cancels the function.

46°HEAT mode

46°HEAT mode is used to set 46° heating mode. In **46°HEAT** mode, the fan speed is set at "AUTO" automatically.

• How to set 46°HEAT mode?

Press $\stackrel{\frown}{\longrightarrow}$ and $\stackrel{\frown}{\models}$ buttons together for about 2 seconds at the heating mode. $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\bullet}{\longrightarrow}$ **Result :** The 46° heat mode will be started.

How to cancel 46°HEAT mode?

Press any button except for (TMEROF), (TMEROF) and $(\texttt{P} \ \textbf{M})$.

Result : The display * will disappear and the 46° HEAT mode will be cancelled. *Note:*

In 46°HEAT mode, the default temperature is set 46°F. 46°HEAT mode can be set only when the air conditioner works in the heating mode.

TIMER mode

It is convenient to set the timer on with **TIMER ON** buttons when you go out in the morning to achieve a comfortable room temperature at the time you get home. You can also set timer off at night to enjoy a good sleep.

How to set TIMER ON?

1. Press (TIMER ON) button.		+ 77⊧ ∾ 8:30		
Result :	"ON 12:00" flashes on the LCD.	73 ⊧ ™ 8:30 © ∀		
2. Press the \checkmark			TEMP	
Result :	Once to increase or decrease the time setting by 1 minu One and a half seconds to increase or decrease the time set by 10 minute. For a longer time to increase or decrease the time by 1	etting		
3.When your de	sired time displayed on LCD, press the TIMER ON button	and confir	n it.	
Result :	CLOCK TIMER ON TIMER OFF QUIET DIMMER ECONOMY			
 4. Timer will be displayed on the remote for 5 seconds and set time will reappear <i>How to cancel TIMER ON?</i> 				
Press the TIME	Non button again.		CLOCK (TIMER ON) (TIMER OFF)	
Result :	A "beep" can be heard and the indicator disappears, the time on mode has been canceled.		QUIET DIMMER ECONOMY	
Note: It is similar to set TIMER OFF, you can make the appliance switch off automatically at your desired time.				
QUIET mo	QUIET mode			
In this mode, the	e air conditioner unit work with low noise performance.		QUIET DIMMER (ECONOMY)	

Note: Press MODE.FAN.SMART. SURGE button cancel QUIET mode.

Remote Control

ECONOMY mode

In this mode, the air conditioner will bring you energy saving performance by lower running current.

Note:

ECONOMY button is ineffective in SMART, SURGE and Power control mode. Press ON/OFF, MODE, TEMP \triangle , TEMP \triangle , FAN, SLEEP, QUIET or ECONOMY button cancel ECONOMY mode. Press and hold "QUIET" button and "ECONOMY" button together for 3 seconds will alternate the mode between the cooling only and the cooling and heating.

IFEEL mode

The built temperature sensor will sense the surrounding temperature, and transmit this back to the unit. This temperature will be your set point until you make another adjustment to the set point.

Press the <i>vifeel</i> button.	(i FEEL) (SLEEP)
Result : The transmit signal in the display will appear, and the IFEEL function will be started.	
Note: Place remote in a location where the signal will be well received by unit. IFEEL should be used to adjust room temperature for momentary comfort. To get the best efficiency from your system allow the unit to operate at a set poin This will allow the system to fluctuate with the changing room loads. How to cancel IFEEL mode?	nt.
Press the button once again.	(i FEEL) (SLEEP)
Result : The transmit signal in the display will disappear,	
and the IFEEL function will be shut off.	
and the IFEEL function will be shut off. Note: If IFEEL function fails to cancel, try holding button for 5 seconds.	
Note:	
Note: If IFEEL function fails to cancel, try holding button for 5 seconds.	
Note: If IFEEL function fails to cancel, try holding button for 5 seconds. Dimmer button	CLOCK (TIMER OR) (TIMER OFF)
Note: If IFEEL function fails to cancel, try holding button for 5 seconds. Dimmer button How to set the DIMMER ? Press the DIMMER button to turn off the light and the display in the unit. Note:	CLOCK (TIMER ON) (TIMER OFF) QUIET (DIMMER) (ECONOMY)
Note: If IFEEL function fails to cancel, try holding button for 5 seconds. Dimmer button How to set the DIMMER ? Press the DIMMER button to turn off the light and the display in the unit.	QUIET (DIMMER) (ECONOMY)
Note: If IFEEL function fails to cancel, try holding button for 5 seconds. Dimmer button How to set the DIMMER ? Press the DIMMER button to turn off the light and the display in the unit. Note: If light is set to off a request from the remote to change a function	QUIET (DIMMER) (ECONOMY)

The lock indicator appears on the display Press together for 2 seconds

How to cancel LOCK?

Press (TMERON) and (TMEROF) buttons together for 2 seconds to stop The lock indicator disappears .	LOCK mode.	CLOCK (TIMER ON) (TIMER OFF)
		QUIET DIMMER ECONOMY
	Press together	-
	for 2 seconds	

QUIET

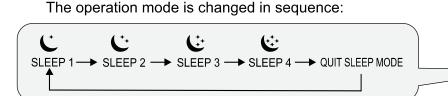
DIMMER

CONOM

Remote Control

SLEEP mode

SLEEP mode can be set in COOLING ,HEATING or DRYING mode.


This function gives you a more comfortable environment for sleep.

- The appliance will stop operation automatically after operating for 8 hours.
- Fan speed is automatically set at low speed.

How to set SLEEP mode ?

Each time button is pressed.

Result:

SLEEP mode 1:

- Set temperature will rise by 2°F at most if the appliance operates in cooling mode for 2 hours constantly, then keeps steady.
- Set temperature will decrease by 2°F at most if the appliance operates in heating mode for 2 hours constantly, then keeps steady.

SLEEP mode 2:

- Set temperature will rise by 2°F if the appliance operates in cooling mode for 2 hours constantly, decrease by 1°F after 6 hours, then decrease by 1°F after 7 hours.
- Set temperature will decrease by 2°F if the appliance operates in heating mode for 2 hours constantly, rise by 1°F after 6 hours, then rise by 1°F after 7 hours.

SLEEP mode 3:

- Set temperature will rise by 1°F if the appliance operates in cooling mode for 1 hour, rise by 2°F after 2 hours, then decrease by 2°F after 6 hours, decrease by 1°F after 7 hours.
- Set temperature will decrease by 2°F if the appliance operates in heating mode for 1 hour, decrease by 2°F after 2 hours, then rise by 2°F after 6 hours, rise by 2°F after 7 hours.

SLEEP mode 4:

Set point will remain steady.

Note: Press SURGE ,SMART, MODE or FAN button cancel SLEEP mode. Note: By pressing "Sleeping mode" four times, or selecting other modes like SURGE, SMART, OR FAN, you could cancel the sleeping function of those units without four sleeping curves. Note: Heating is NOT available for cooling only air conditioner.

Unit Function

1. Major general technical parameters

- Remote receiver distance (front of the air conditioner): 25 feet.
- Remote receiver angle: Less than 60 degrees.
- Temperature control accuracy: ±2.4°F.
- Time error: Less than 1%.
- 2. Functions of the controller
- Display panel
 - Control functions of the remote controller
 - Display of the indoor unit
 - Information on the screen:

Displaying Scheme:

7-segment tube Display set temperature or indoor temperature, and diagnostic codes. A diagnostic code is displayed according to the signal from the indoor CPU. The error code will flash for 5 seconds while displayed.

Running LED It is on during operation. It is flashing when the unit defrost.

TIMER LED When the timer mode is on, the LED will be lit.

- Sleep LED When the sleep mode is on, the LED will be lit, and after 10 seconds, the LED will be off.
- Compressor LED lights up when compressor is running.

Remote control receiver This section receives signals from the remote control.

3. Control function

Auto Start switch

If the appliance under the Stand-by state, all the Operation Mode, Air volume, Temperature Setting, Forced Cooling function will be restored to the last setting when you press on the "ON/OFF" button, but will lose the Air flow direction setting.

When the appliance is connected to the power for the first time, it will operate in the auto mode, It will stay in stand-by state if you press the "ON/OFF" button during the normal operation.

When the appliance is in the Stand-by state, press and hold the auto start switch for 5 seconds, the buzzer rings once, it will operate in cooling mode, and the indoor fan speed is set to high-speed. Room temperature will not affect indoor fan speed in standby mode.

When the emergency switch is pressed or receives the signal of the remote control, it will exit this mode, and it will operate with the corresponding order.

Operator-machine communication

If the unit has I feel function, when the I feel function is set by the remote control, the room temperature will depend on the remote control and it will be detected by the sensor of the remote control. Normally the remote control will automatically transmits a signal at an interval of 10 minutes only for H1 remote control, it is 9 minutes, but if the room temperature changed exceed 2.4°F in a short period of time, the remote control will transmits a signal within 2 minutes. If the indoor unit has not received a remote signal within 30 minutes, the room temperature will depend on the room temperature sensor of indoor unit.

- Timer function
 - Real time of Timer setting
 - (1) The max Timer ranges is 24 hours.
 - (2) Timer ON/OFF
 - (3) Timer ON/OFF can be set available in turn.
 - (4) The Timer accurate by more than 97%
 - (5) The Timer can be adjusted by 1 min increments.

(6) The appliance can set the ON-Timer and OFF-Timer at the same time, but no timer setting indicated.

Sleep

(1) The Sleep mode can only be set during Cool, Heat and Dry mode.

(2) When the appliance runs in Sleep mode, it will stop after 8 hours operation, then it will cancel the Sleep setting. When the appliance operates under the OFF-Timer setting condition, if the OFF-Timer setting less than 8 hours, it will keep the Sleep mode until the OFF-Timer setting; if the OFF-Timer setting is more than 8 hours, it will cancel the OFF-Timer setting after the Sleep mode is OFF.

(3) When the Sleep mode is selected in cooling mode, if the room temperature not less than 79°F, the set temperature will not be adjusted, otherwise, the setting temperature will be raised by 1°F per hour, but the max setting temperature raise is 1°F.

(4) When the Sleep mode is select with Heat mode, the setting temperature will be decreased by 1°F per hour during the successive 3 hour, but the max setting temperature decrease is 3°F.

(5) When the appliance operates in Sleep mode, the indoor fan runs in the LOW setting, and the air flow direction is same as the last setting and the temperature and air flow direction can be adjusted by user. The Running indicator will be flashed 10 times per 1 Hz frequency, then all the indicators turn OFF except the Sleep light after 5 min elapse. Those indicators will recover when the temperature or Time setting is adjusted, after the setting, the indicators will be lit for 10 sec, then turn OFF.

Automatic run (SMART) mode

When the appliance operates in smart, the air flow direction can be adjusted.

(1) When the set temperature is 79°F, the appliance will run in cool mode if the room temperature exceeds 79°F.

(2) When the room temperature exceeds 73°F, but below 79°F, it will run in the Dry mode(It will turn on automatic setting after 3 min LOW air volume running.).

(3) When the room temperature exceeds 70°F, but below 73°F, it will operate in the Fan only mode, the air volume is set by LOW and the fan speed can be adjusted

(4) When the room temperature is not more than 70°F, it will operate in Heat mode, and the temperature is set to 72°F.

Unit Function

Cooling-run mode

Outdoor Fan

The outdoor fan's speeds except the single speed motor can be changed according to outdoor ambient temperatures.

When operating at a fixed frequency, the outdoor fan is forced to operate at the high speed.

Indoor fan

(1) When the indoor fan is running, this operation state could be controlled by the remote control with High, Medium, Low and Automatic setting. (2) When the appliance is set to the automatic condition in the Cool mode for the first time, the fan speed will run at Low setting. After that, temperature and fan speed will run as shown in figure 303. When the difference between the setting temperature and the room temperature is between 3.6° F and 7.2° F, the indoor fan speed will keep the current speed.

Air flow direction control

The louver is controlled by a step motor, and it swings the horizontal louver automatically. Press the SWING button to swing or stop the louver.

During the louver swing in normal operation, the current position will be stored. When the appliance turns off and louver swing automatically to the default position, it will position at the close position plus 5°.

Reversing valve

State: Power is removed for cooling

Switchover: When initially powered on for cooling, the reversing valve is interrupted immediately.

When the heating is changed to the cooling, it needs an interval of 50 seconds for the reversing valve to change over from being activated to being interrupted.

Heating-run mode

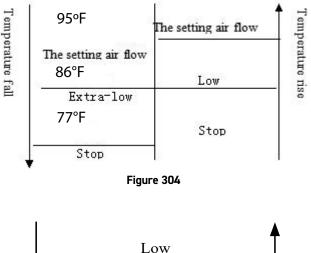
Temperature compensation

The temperature compensation is 5° in heating mode. For example, if the set temperature is 77° F by the remote control, when the room temperature is detected with 88°F, the compressor will turn off. The main reason is that the hot air is condensed at the top of the building.

Note: The compensation is available only if the room temperature sensor of indoor unit is used and it is not available when it is subject to the sensor on the remote control.

Indoor fan motor operation

Anti-cold air system:


When the appliance runs in Heat mode condition, the indoor fan motor operation is shown as following to prevent cold air from blowing out of the unit. Refer to figure 304.

When the anti-cold air system is activated by the system logic during compressor operation, the louver swings to the cold air protection position. The louver recovers to the original position after the air volume change to LOW. When the room temperature reaches the setting temperature, the compressor will turn off, and the air flow changes to LOW, the louver swings to the cold air protective position to prevent the air drop into human body directly. When the indoor pipe coil temperature drops continuously, it will turn on the cold air protective system in Extra-LOW or stop the fan motor.

The indoor fan motor is only controlled by the signal of indoor pipe coil temperature, regardless of compressor run status (ON/OFF), even during first heat mode sequence.

The indoor fan motor will operate according to the different settings (High, Median, Low and Automatic) by the remote control, but the anti-cold air system has priority.

When the unit runs in the heat mode with the automatic setting at first time, the fan speed will be in the LOW setting. Refer to Figure 304. When the difference between the setting temperature and the room temperature between $3.6^{\circ}F$ and $7.2^{\circ}F$, the indoor fan speed will keep in current speed. Refer to figure 305.

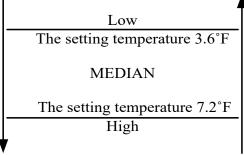


Figure 305

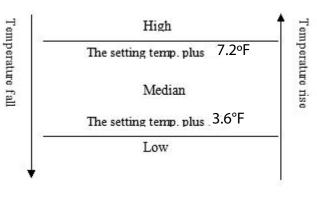


Figure 303

Unit Function

Air flow direction control

The horizontal louver is controlled by a step motor, press the SWING button to swing or stop the louver.

During the louver run in normal operation, the current position will be stored. When the appliance turns off and louver swings automatically to the default position, it will position at the default position plus 5°.

Outdoor fan

The outdoor fan speeds can be changed according to outdoor ambient temperatures.

Reversing Valve

State: It is energized in heating.

Switchover: When initially powered on for heating, the reversing valve is activated immediately.

In the change from cooling to heating, it needs an interval of 50 seconds for the reversing valve to change over from being interrupted to being activated.

The super function (option)

In cooling mode, when you press the SUPER button by remote control, the unit will operate for 15 minutes with the following setting: The set temperature is 61°F;

The fan speed with highest speed;

The compressor runs with high frequency.

Dehumidifying mode

The dehumidifying mode is illustrated as follows:

Dehumidifying area I: Operation at the frequency in the range (30-60Hz) according to Dt

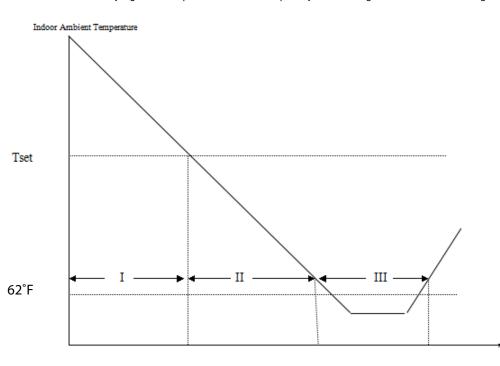
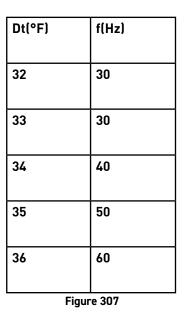



Figure 306

(T indoor ambient-Tset).

Dehumidifying area II: The compressor stops for 5 minutes and then operates for 5 minutes at the lowest frequency. Dehumidifying area III: The compressor stops.

Fan Only Mode Operation

During the appliance run in this mode, the compressor and outdoor fan stop, the indoor fan operate under the pre-setting of air volume, and the louver swing, and the indoor fan speed same as the Heating Mode.

Time

Special Function Instruction

1. Major general technical parameters

- 1.1 Remote receiver distance (front of the air conditioner) : 25 ft.
- 1.2 Remote receiver angle: Less than 60 degrees.
- 1.3 Temperature control accuracy: ±1°C(1°F).
- 1.4 Time error: Less than 1%.

2. Functions of the controller

2.1 Display panel

I. Control functions of the remote controller (See operating and installation manual)

II. Display of the indoor unit

Information on the screen:

Displaying Scheme:

7-segment tube: Display set temperature or indoor temperature, and display fault code in trouble indicating. An error code is displayed

according to the signal from the indoor CPU. The error code will flash for 5 seconds while displayed.

Running LED: It is on during operation. It is flashing when the unit is in defrost.

TIMER LED: When the timer mode works, the LED will be lighted.

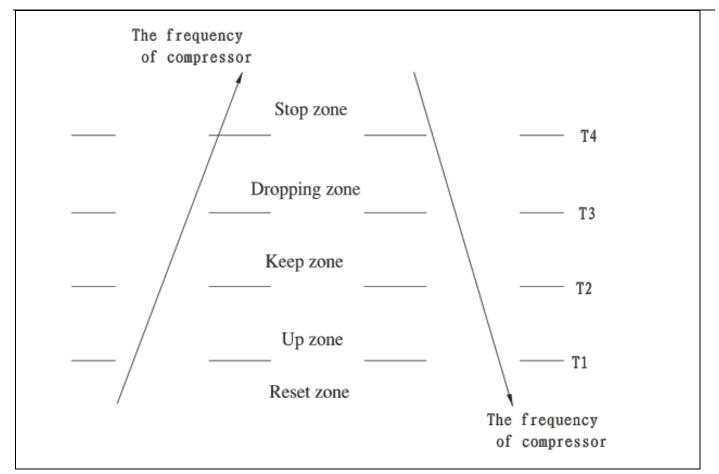
Sleep LED: When the sleep mode works, the LED will be lighted, and after 10s, the LED will be off.

Compressor LED: It lights up when compressor is running.

Remote control receiver: This section receives signals from the remote control.

1. Control function

3.1 Discharge pipe temperature control


By monitoring the compressor's exhaust temperature, the current operating status of the machine is determined,

and the exhaust protection controls the frequency increase, decrease, and shutdown of the compressor to achieve

the purpose of protecting the machine.

the discharge	Operation
temperature T	
T <t1< td=""><td>Compressor restart</td></t1<>	Compressor restart
T1 <t<t2< td=""><td>Compressor frequency increasing operation</td></t<t2<>	Compressor frequency increasing operation
T2 <t<t3< td=""><td>Compressor keeps operating at the current frequency</td></t<t3<>	Compressor keeps operating at the current frequency
T3 <t<t4< td=""><td>Compressor frequency decreasing operation</td></t<t4<>	Compressor frequency decreasing operation
T4 <t< td=""><td>Compressor shutdown due to exceeding exhaust protection value, outdoor fan keeps operating at the current</td></t<>	Compressor shutdown due to exceeding exhaust protection value, outdoor fan keeps operating at the current
	state

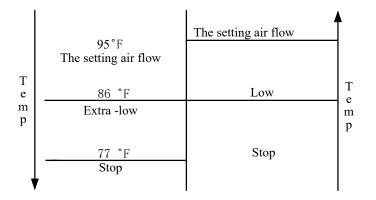
Special Function Instruction

3.2 Heating Anti-Cold Air Protection

When the heating mode is turned on, to avoid discomfort caused by cold air blowing out immediately after startup, a cold air prevention function is set. The operation of the cold air prevention function during the startup of the heating mode is as follows;

T1=86°F (30°C)

T2=95°F (35°C)


Detect the indoor coil temperature	Operation
coil temperature < T1	The indoor fan swing is set to the cold air prevention angle, and the indoor fan does not start.
T1 <coil td="" temperature<t2<=""><td>The indoor fan swing remains at the cold air prevention angle, and the indoor fan rotates at a gentle speed.</td></coil>	The indoor fan swing remains at the cold air prevention angle, and the indoor fan rotates at a gentle speed.
coil temperature≽T2	The indoor fan swing moves to the maximum angle, and the indoor fan rotates at the set speed.

Special Function Instruction

3.3 Control of Indoor Motor Speed During Heating Process

During the heating process, the indoor fan speed operates based on the coil temperature according to the following mode. When the unit is turned off, the indoor fan stops simultaneously with the low coil temperature, while if the temperature is high, it continues to run for approximately half a minute to dissipate residual heat

	Indoor coil temperature T	Indoor motor speed	Indoor fan swing position:
During the heating	T≽86°F	Operate according to the speed set on the remote control	Maximum angle or angle set by the remote control
operation, the indoor motor speed changes with the coil speed.	77°F ∢T<86°F	Operate at the slightest breeze speed	Cold air prevention angle
	T< 77⁰ F	Motor stops running	Cold air prevention angle
During the heating process,	T<86°F	Motor remains stopped	Cold air prevention angle
after the indoor motor stops operating, the indoor fan	86°F ∢T<95°F	Motor operates at a gentle breeze speed	Cold air prevention angle
speed changes with the coil temperature.	T≽95°F	Motor operates at the set speed	Maximum angle or angle set by the remote control

During the heating operation in automatic mode, the indoor fan speed operates in the following ways:

Indoor environmental temperature difference with set temperature T	Indoor fan speed
T<3.6°F	Low fan speed
T=3.6°F	Maintain current fan speed
3.6°F <t<7.2°f< td=""><td>Medium fan speed</td></t<7.2°f<>	Medium fan speed
T=7.2°F	Maintain current fan speed
T>7.2°F	High fan speed

Special Function Instruction

3.4 Control Method of Indoor Motor During Cooling

During cooling, the indoor fan speed can be controlled using the remote control. When in the automatic fan speed mode, it operates in the following way; upon shutdown, the indoor fan will continue to operate for half a minute to blow off water from the evaporator, serving the purpose of mold prevention and cleaning.

When the cooling mode is turned on in automatic mode, the fan speed defaults to low. Then, every 5 minutes or so, the current temperature is detected and it operates in the following manner:

Indoor environmental temperature difference with set temperature T	Indoor fan speed
T<3.6°F	Low fan speed
T=3.6°F	Maintain current fan speed
3.6°F <t<7.2°f< td=""><td>Medium fan speed</td></t<7.2°f<>	Medium fan speed
T=7.2°F	Maintain current fan speed
T>7.2°F	High fan speed

3.5 Control Method of Indoor Motor in Dehumidification Mode

In dehumidification mode, the indoor fan speed is not adjustable, but the indoor airflow direction is adjustable.

Upon shutdown, the indoor fan will continue to operate for half a minute to blow off water from the evaporator, serving the purpose of mold prevention and cleaning.

4. Control of Outdoor Motor Speed During Heating Process

During heating, the outdoor motor speed operates as follows:

When the outdoor motor is a single-speed motor, it defaults to high speed. If the outdoor motor has three speeds (high, medium, and low), it is controlled according to the following rules.

Where T1 is the temperature threshold between the outdoor low and medium temperature zones, and T2 is the temperature threshold between the outdoor medium and high temperature zones.

Outdoor ambient temperature T	Outdoor Fan Speed
T <t1+1.8°f< td=""><td>High speed</td></t1+1.8°f<>	High speed
T=T1+1.8°F	Transition from high speed to medium speed
T=T1-1.8°F	Transition from medium speed to high speed
T1+1.8°F <t<t2+1.8°f< td=""><td>Medium speed</td></t<t2+1.8°f<>	Medium speed
T=T2+1.8°F	Transition from medium speed to low speed
T=T2-1.8°F	Transition from low speed to medium speed

Special Function Instruction

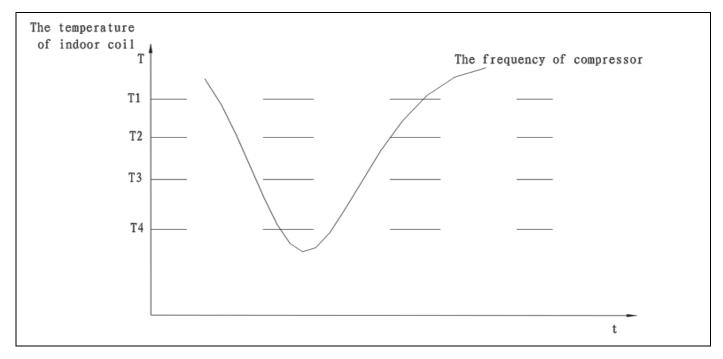
4.1 Control of Outdoor Motor Speed During Cooling

During cooling, the outdoor motor speed operates as follows:

When the outdoor motor is a single-speed motor, it defaults to high speed. If the outdoor motor has three speeds (high, medium, and low), it is controlled according to the following rules;

Where T1 is the temperature threshold between the outdoor low and medium temperature zones, and T2 is the temperature threshold between the outdoor medium and high temperature zones.

Outdoor ambient temperature T	Outdoor Fan Speed
T <t1+1.8°f< td=""><td>Low speed</td></t1+1.8°f<>	Low speed
T=T1+1.8°F	Transition from low speed to medium speed
T=T1-1.8°F	Transition from medium speed to low speed
T1+1.8°F <t<t2+1.8°f< td=""><td>Medium speed</td></t<t2+1.8°f<>	Medium speed
T=T2+1.8°F	Transition from medium speed to high speed
T=T2-1.8°F	Transition from high speed to medium speed


5. Anti-Freeze Protection

To prevent the indoor evaporator from frosting due to excessively low refrigerant temperature within the system, an indoor anti-freeze protection mechanism is implemented during the operation of the air conditioning unit. The key temperature thresholds are defined as follows:

- T: Indoor coil temperature
- T1: Anti-freeze deactivation temperature
- T2: Anti-freeze frequency-up prohibition temperature
- T3: Anti-freeze frequency-down temperature
- T4: Anti-freeze shutdown temperature

	Indoor Coil Temperature T	Machine Operating Status
During the cooling	T>T1	The machine operates at the current frequency and control settings, maintaining the current frequency or adjusting the frequency up or down.
operation, the indoor coil temperature has	T3 <t«t2< td=""><td>The machine operates at the current frequency, with frequency increases prohibited.</td></t«t2<>	The machine operates at the current frequency, with frequency increases prohibited.
an impact on the	T4 <t∢t3< td=""><td>The machine begins to reduce its frequency.</td></t∢t3<>	The machine begins to reduce its frequency.
operation of the	T∢T4	The outdoor compressor and fan of the machine stop operating, while the indoor fan continues to run.
machine.	T>T1	The outdoor compressor and fan of the machine resume operation.

Special Function Instruction

6. Heating Low-temperature Protection

When the outdoor environment is extremely cold, it will trigger outdoor low-temperature protection, and its operation is as follows: T1: Heating outdoor low-temperature protection temperature

	Outdoor ambient	Machine operation status	
	temperature T	Machine operation status	
During the heating	T>T1	The machine operates at the current control, maintaining the current	
operation, the outdoor	1/11	frequency or increasing/decreasing the frequency.	
ambient temperature has	T ≤ T1 for one continuous	The compressor and fan of the outdoor stop operating, while the indoor fan	
an impact on the machine's	minute	continues to run.	
operation.	T≽T1+5.4°F	The compressor and fan of the outdoor resume operation.	

7. Outdoor High-Temperature Protection for Cooling

When the outdoor environment is extremely hot, it will trigger outdoor high-temperature protection, and its operation is as follows:

T1: Outdoor high-temperature protection temperature for cooling

	Outdoor ambient temperature T	Machine operation status
	T <t1< td=""><td>The machine operates at the current control, maintaining the current frequency or increasing/decreasing the frequency.</td></t1<>	The machine operates at the current control, maintaining the current frequency or increasing/decreasing the frequency.
During the cooling operation, the outdoor ambient temperature has an impact	T}T1 for one continuous minute	The compressor and fan of the outdoor stop operating, while the indoor fan continues to run.
on the machine's operation.	T∢T1-5.4°F	The compressor and fan of the outdoor resume operation.

Special Function Instruction

When the machine receives the 46°F heating function command from the remote control, it will operate in the following manner:

Machine Receiving Information	Machine operation status	
The remote control activates the 46°F heating	At this point, the machine operates according to the set temperature of 46°F, and	
function and the machine receives the	the indoor anti-cold air function does not function at this time.	
command.		

Special Function Instruction

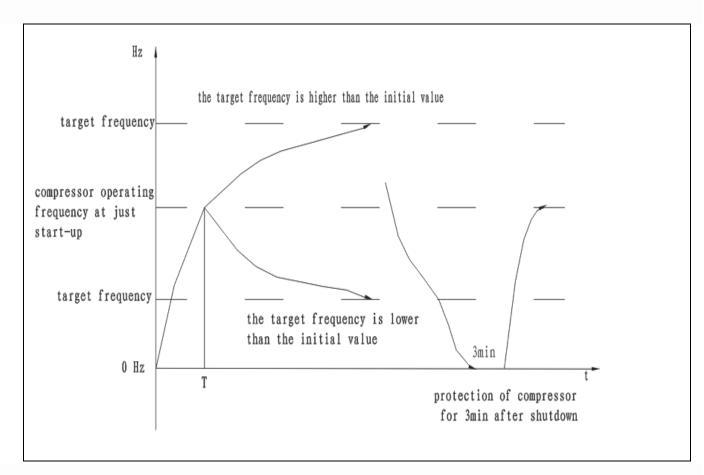
The indoor self-cleaning process is as follows:

	Step	Machine Operation Status
Indoor self-cleaning operation process	The machine can enter the indoor self-cleaning mode while in standby, cooling, heating (for heat-cool models), dehumidifying, air blowing, or auto mode, provided that the indoor ambient temperature T meets the following condition: 32°F & T & 90°F	The indoor motor stops operating, and the indoor air deflector remains in the anti-cold air position until the self-cleaning process is complete. After completion, it returns to the previous state before entering the self-cleaning mode.
	The indoor coil temperature is $\leq -2.2^{\circ}$ F and this condition persists for 6 minutes, or the indoor temperature is \leq 41°F and this condition persists for 6 minutes or up to a maximum of 12 minutes. The indoor coil temperature is \geq 104°F and this condition	The machine operates in heating mode, with the set defrosting frequency and opening degree. At this time, the indoor motor runs at a gentle fan speed. The machine exits this mode and returns to the
	persists for 60 seconds or up to a maximum of 7 minutes.	state before entering the self-cleaning process.

11. Outdoor Self-Cleaning

	Step	Machine Operation Status	
	The machine can enter the outdoor	The indoor air deflector remains in the anti-cold air position until the	
	self-cleaning mode while in	self-cleaning process is complete and then returns to the previous state.	
	standby, cooling, heating (for	The indoor motor operates as follows:	
	heat-cool models), dehumidifying,	If the indoor coil temperature T is less than 90°F, it stops operating.	
	air blowing, or auto mode,	If the indoor coil temperature T is between 90°F and 122°F (inclusive), it	
	provided that the outdoor ambient	operates at a low fan speed for self-cleaning.	
	temperature T meets the following	If the indoor coil temperature T is greater than 122°F, it operates at a medium	
	condition: 32°F < T < 90°F.	fan speed for self-cleaning.	
Outdoor			
colf clooping		Compressor: It operates according to the outdoor self-cleaning frequency.	
self-cleaning		Currently, if the machine enters the self-cleaning mode from the cooling mode,	
operation		the compressor will stop for 3 minutes before restarting, and the four-way	
process	Outdoor Frosting Phase	valve will delay for approximately 1 minute to change directions.	
		Outdoor Motor: It stops. Currently, if the machine enters the self-cleaning	
		mode from the cooling mode, the outdoor motor will delay for approximately	
		half a minute before stopping.	
		When the indoor coil temperature is ≼ -2.2°F and this condition persists for 7	
	End Conditions of Frosting	minutes or up to a maximum of 12 minutes,	
		When the outdoor temperature T is \leq 50°F, operate according to the defrosting	
		conditions;	
	Defrosting		
		When the outdoor temperature T is > 50°F, the outdoor motor operates at a	
		high fan speed.	

Special Function Instruction


$12_{\scriptscriptstyle N}$ Silent Mode

	Components	Operation	
	Compressor	Operate within the frequency range set for silent mode	
Silent Mode	Indoor Fan	Operate at the silent mode speed setting	
		Operate at the silent mode speed setting. During cooling, if the outdoor temperature is high, it will operate at the current speed.	

13、 Automatic Mode Operation Control

	Current Indoor Temperature T	Machine Operation Action
Heat Pump Model	T>79F	Cooling Mode
	23°F <t∢79°f< td=""><td>Dehumidification Mode</td></t∢79°f<>	Dehumidification Mode
	70°F <t∢73°f< td=""><td>Air Supply Mode</td></t∢73°f<>	Air Supply Mode
	T∢79°F	Heating Mode

14、 Control of Compressor Operating Frequency

Special Function Instruction

Machine Status	Operation
	The compressor stabilizes at the first frequency for a short period of time T after starting.
During Startup	
	The compressor increases or decreases its frequency according to the target frequency.
After Startup Time Exceeds T	
	The compressor operates at the target frequency while being subject to exhaust protection,
	high-temperature protection, overcurrent protection, and other mechanisms.
During Operation	
	The compressor stops, and needs to wait for 3 minutes before restarting.
After Shutdown and Restart	

15. Defrosting

The following conditions need to be met simultaneously:

- T1: Outdoor ambient temperature
- T2: Outdoor unit coil temperature
- T3: A temperature value set during product development

T4: A temperature value set during product development

Conditions	Parameter	
Time Condition	The continuous heating operation time reaches the duration of t1	
Temperature		
Condition	T1- T2 $T3$, and this condition is maintained for a continuous duration of t2	
Temperature	T_{2}/T_{1} and this condition is maintained for a continuous duration of t2	
Condition	T2 < T4 and this condition is maintained for a continuous duration of t2	

After meeting the above conditions, the defrosting process will be initiated, and the defrosting actions are as follows:

Component	operating during defrosting start	During defrosting	At the end of defrosting	After exiting the defrosting mode
Indoor unit	The indoor motor stops running, an angle.	nd the air swing is adjusted to t	he anti-cold-air	Operate at the mode before defrosting.
Compressor	The compressor stops.	After a certain period of shutdown, the operation is performed at the defrosting frequency.	The compressor stops.	Operate at the heating frequency.
The fan motor of outdoor unit	The outdoor fan stops after the compressor has been off for seconds	The outdoor fan stops	The outdoor fan stops	When the compressor starts, the outdoor fan starts simultaneously
4-way valve	After the compressor stops for a few seconds, the four-way valve switches from heating to cooling mode.	4-way valve is operating in cooling mode	4-way valve is operating in cooling mode	Before starting the compressor, the four-way valve first switches from cooling mode to heating mode.

Special Function Instruction

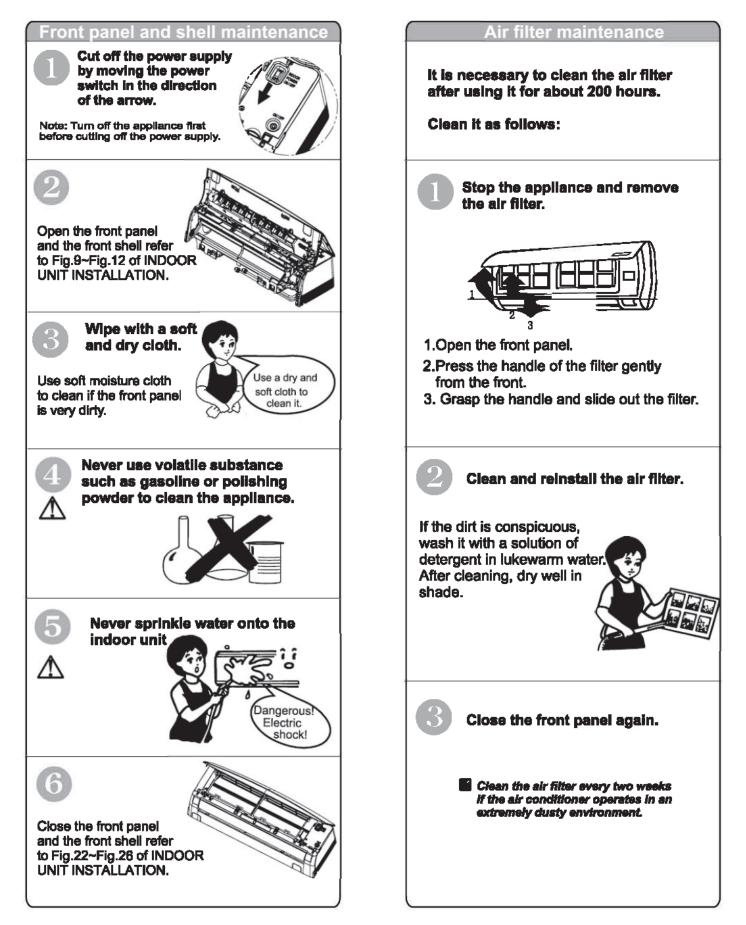
16.Sleep Mode

Sleep mode is valid in cooling, heating (models with heating function), and dehumidification modes, and is invalid in other modes.

Sleep mode lasts for 8 hours. When the timing shutdown function is set at the same time:

If the timing duration is less than 8 hours, the sleep mode will be maintained until the shutdown;

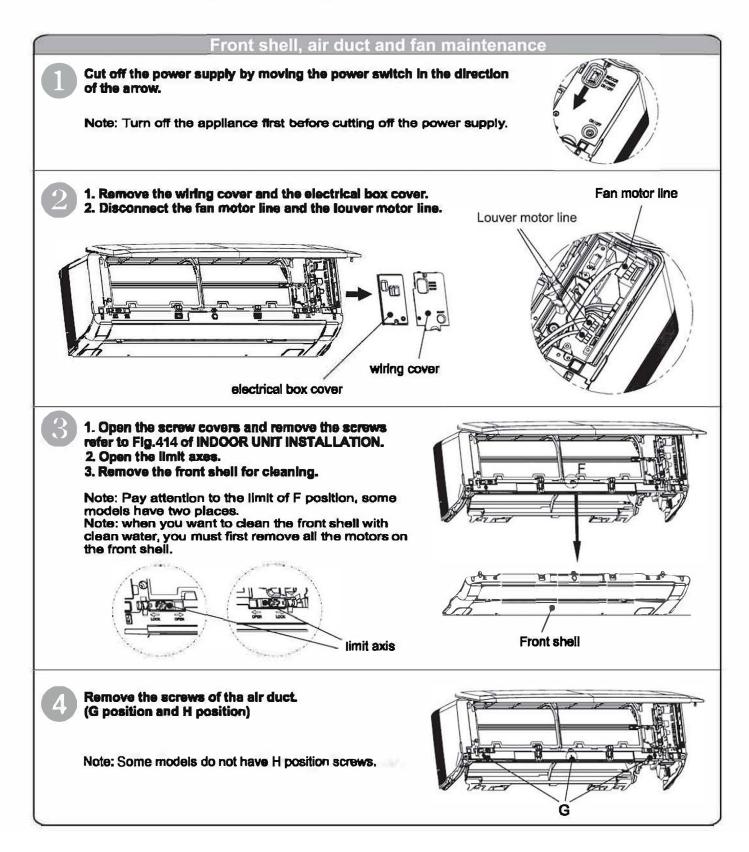
If the timing duration is greater than 8 hours, the machine will shut down and the timing shutdown function will be canceled when the sleep mode ends.


Sleep Mode1			
Cooling	After running for 1 hour, the set temperature value increases by 1 degree.	After running for 2 hours, the set temperature value increases by another 1 degree.	
Heating	After running for 1 hour, the set temperature value decreases by 1 degree.	After running for 2 hours, the set temperature value decreases by another 1 degree.	

Sleep Mode2				
Cooling	After running for 1 hour,	After running for 2 hours,	After running for 6 hour,	After running for 7 hours,
	the set temperature value	the set temperature value	the set temperature value	the set temperature value
	increases by 1 degree.	increases by another 1	decreases by 1 degree.	decreases by another 1
		degree.		degree.
Heating	After running for 1 hour,	After running for 2 hours,	After running for 6 hour,	After running for 7 hours,
	the set temperature value	the set temperature value	the set temperature value	the set temperature value
	decreases by 1 degree.	decreases by another 1	increases by 1 degree	increases by another 1
		degree.		degree.

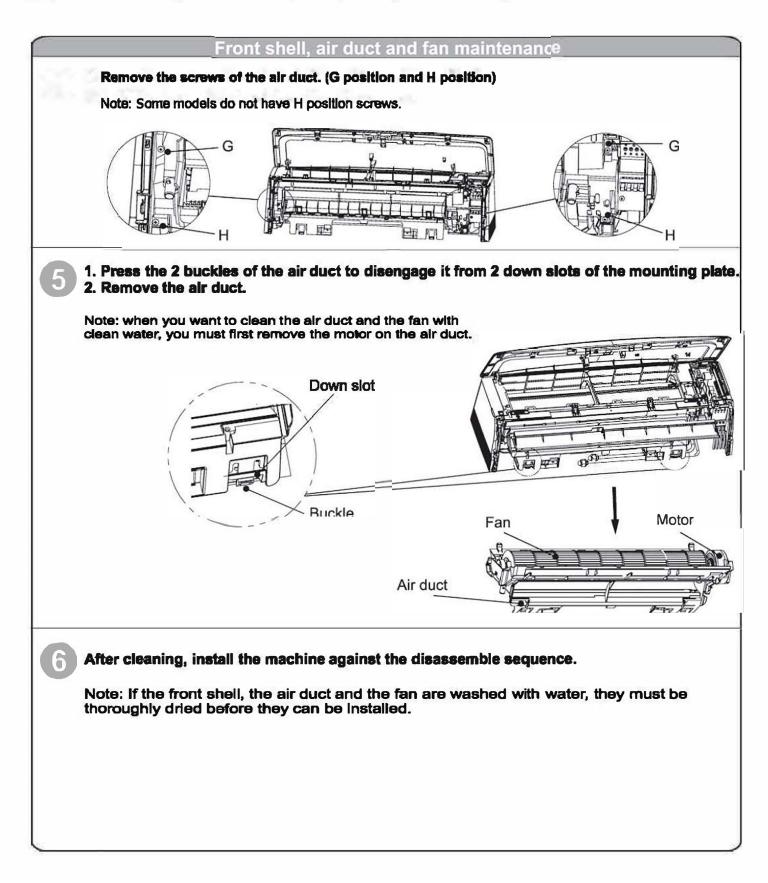
Sleep Mode3				
Cooling	After running for 1 hour, the	After running for 2 hours,	After running for 6 hour,	After running for 7
	set temperature value	the set temperature value	the set temperature	hours, the set
	increases by 1 degree.	increases by another 2	value decreases by 2	temperature value
		degree.	degree.	decreases by another 2
				degree.
Heating	After running for 1 hour, the	After running for 2 hours,	After running for 6 hour,	After running for 7
	set temperature value	the set temperature value	the set temperature	hours, the set
	decreases by 2 degree.	decreases by another 2	value increases by 2	temperature value
		degree.	degree	increases by another 2
				degree.

Sleep Mode4					
Cooling	keep the current set temperature				
Heating keep the current set temperature					


MAINTENANCE

MAINTENANCE

The following is a deep cleaning and must be completed by a professional.


Users are strictly forbidden to operate privately, otherwise they will be at their own risk.

MAINTENANCE

The following is a deep cleaning and must be completed by a professional.

Users are strictly forbidden to operate privately, otherwise they will be at their own risk.

TROUBLESHOOTING

Outdoor Unit

Diagnostic Codes _ Unit Not Running When the unit has the following trouble and the compressor stops running, The LED of outdoor control board will show the error sequence automatically:

Outdoor Failure Description	LED1	LED2	LED3	the root cause my be one of the following	
Mark description: the lights flash every two seconds for the following faults					
Outdoor coil temperature sensor faulted	ON	OFF	ON	a. The outdoor coil sensor connector loose. b. The outdoor coil temperature sensor failed. c. The outdoor control board failed.	
Compressor exhaust temperature sensor faulted	ON	OFF	OFF	a. The compressor exhaust temperature sensor connector loose. b. The compressor exhaust temperature sensor failed. c. The outdoor control board failed.	
Communication failure between the indoor unit and outdoor unit	OFF	OFF	BLINKS	 a. The communication cable connector loose. b. The communication cable failed. c. The connection between the filter board and the outdoor control board is incorrect or loose. d. The connection between the filter board and the terminal is incorrect or loose. e. The indoor control board failed. f. The PFC board failed. g. The power board failed. h. The outdoor control board failed. 	
Current overload protection	ON	BLINKS	OFF	a. The fan motor run abnormally. b. The condenser and evaporator is dirty. c. The air inlet and outlet is abnormal.	
Maximum current protection	ON	BLINKS	ON	a. The outdoor control board is short circuited.b. The drive board is short circuited.c. The other components are short circuited.	
Communication error between outdoor unit and driver	OFF	ON	ON	a. The connection wires are loose. b. The outdoor board or drive board failed.	
Outdoor EEPROM faulted	ON	ON	ON	a. The EEPROM chip is loose. b. The EEPROM chip inserted in wrong direction. c. The EEPROM chip failed.	
Compressor exhaust temperature too high protection	OFF	BLINKS	ON	a. The compressor exhaust temperature sensor failed. b. The refrigerant of the unit is low.	
Outdoor ambient temperature sensor faulted	ON	ON	OFF	a. The outdoor ambient temperature sensor connecter loose. b. The outdoor ambient temperature sensor failed. c. The outdoor control board failed.	
Compressor shell high temperature protection	OFF	ON	BLINKS	a. The compressor exhaust temperature sensor connector loose. b. The refrigerant of the unit is low.	
Anti-freeze protection with cooling or overload protection with heating in indoor unit	OFF	BLINKS	BLINKS	 a. The indoor coil temperature sensor connector loose. b. The indoor coil temperature sensor failed. c. The indoor control board failed. d. The refrigerant system is abnormal. 	
Compressor drive faulted	BLINKS	OFF	BLINKS	a. The outdoor drive board failed. b. The compressor failed. c. The outdoor control board failed.	
Outdoor fan motor locked rotor protection	BLINKS	BLINKS	ON	 a. The connection of the outdoor fan motor is loose. b. There is something blocking the outdoor fan. c. The fan motor failed. d. The outdoor control board failed. 	
Outdoor coil anti-overload protection with cooling	OFF	ON	OFF	 a. There is too much refrigerant. b. The outdoor fan motor failed. c. The outdoor fan is broken. d. The condenser is dirty. e. The air inlet and air outlet of the indoor unit and the outdoor unit is not normal. 	

TROUBLESHOOTING

Outdoor Unit Diagnostic Codes - Unit Not Running

Outdoor Failure Description	LED1	LED2	LED3	the root cause my be one of the following	
IPM module protection	OFF	BLINKS	OFF	 a. The IPM board failed. b. The outdoor fan is broken. c. The outdoor fan motor failed. d. The outdoor fan has been blocked. e. The condenser is dirty. f. The outdoor unit has been installed without standard. 	
PFC protection	BLINKS	OFF	OFF	a. The PFC failed. b. The outdoor drive board failed.	
Compressor pre heating process	BLINKS	ON	BLINKS	it is normal mode in cold weather	
Chip in outdoor board faulted	ON	OFF	BLINKS	a. Using the wrong drive board. b. Using the wrong compressor.	
AC voltage higher or lower protection	ON	ON	BLINKS	a. The supply voltage is higher or lower than normal. b. The inner supply voltage of the unit is higher or lower than normal.	
DC compressor start failure	BLINKS	BLINKS	OFF	a. The outdoor drive board failed. b. The compressor failed.	
Outdoor ambient temperature too low or too high protection	BLINKS	OFF	OFF	a. Outdoor ambient temperature too low or too high.	
There is a leak in the product.	BLINKS	ON	ON	a. There is a leak in the indoor b. There is a leak in the outdoor c. There is a leak in the connecting pipe	
Mark description: the lights flash every two seconds for the following faults					
Protection against overheated outdoor radiator	BLINKS	OFF	OFF	a. Radiator sensors failed. b. Detection circuit of the sensor on the control panel fails	
Protection of the system against too high pressure	BLINKS	BLINKS	OFF	a. The pressure switch failsb. The pressure detection switch on the control panel failed.c. The measured value of the system pressure exceeds the limit.	
Protection of the system abnormal	OFF	BLINKS	ON	a. Check whether the outdoor valves are opened.	

TROUBLESHOOTING

٦

Outdoor Unit

г

Diagnostic Codes when Compressor is Running

THE FLASH IS 1 SECOND				
No.	LED 1	LED 2	LED 3	Reasons for the current operating frequency of the compressor is limited
1	BLINK	BLINK	BLINK	Normal frequency rising and decreasing, no limitation
2	OFF	OFF	ON	Frequency decreasing or prohibition of frequency rising caused by over-current
3	OFF	ON	ON	Frequency decreasing or prohibition of frequency rising caused by anti-freezing of refrigeration or anti-overload in heating
4	ON	OFF	ON	Frequency decreasing or prohibition of frequency rising caused by too high compressor discharge temperature
5	ON	ON	ON	Operation at fixed frequency (in the case of capability measuring or compulsory operation at fixed frequency)
6	BLINK	OFF	OFF	Protective frequency decreasing against outdoor overload (over- power, over frequency conversion rate, over torque, detection of DC under-voltage)
7	ON	OFF	OFF	Frequency decreasing caused by indoor and outdoor communica- tion fault
8	OFF	ON	BLINK	Frequency decreasing or prohibition of frequency rising protection against overload of outdoor coiled pipe
9	OFF	ON	OFF	Frequency decreasing or prohibition of frequency rising for power- saving when it is being used simultaneously with other appliances

Indoor Unit

Diagnostic Codes

When the unit has the following trouble and the compressor stops running, The LED of outdoor control board will show the error sequence automatically:

The indoor display board will show the error code automatically when the unit has the following trouble:

When the unit has the following trouble and the compressor stops running, press the sleep button on the remote controller for 10 times in ten seconds and the 7-segment tube of the display board will show the error code as the following, if two malfunctions happened at the same time, the sleep button needs to be pressed 10 times again, the LED will show the other error code.

Refer to the remote controller which the sleep key can set into 4 different combination ways, when using to check the error codes only takes effect for pressing the sleep key 10 times in ten seconds instead of 4 times.

NOTE: If the troubleshooting inquiry display by 7-segment tube, then the error code will be displayed, otherwise only the LED of the display board can show.

The failure is detected when the room temperature sensor broken or shorted over 5 sec.

The failure is detected when the temperature sensor of heater exchange broken or shorted over 5 sec.

The failure is detected when each setting data is not match after the EEPROM self-check two times.

The failure occurs when the grounding signal is not detected after the appliance power ON.

Error	Content	The root cause is may be one of the following	
Code			
EA	The error code will display when the communication between display board and control board is interrupted.	a. The connection between the display board and control board is loose. b. The indoor control board failed. c. The wiring of the display board failed	
0	Normal		
1	The failure for temperature sensor of outdoor coil	a. The outdoor temperature sensor loose. b. The outdoor temperature sensor failed. c. The indoor control board failed.	
2	Compressor exhaust temperature sensor in trouble	a. The compressor exhaust temperature sensor connector loose. b. The compressor exhaust temperature sensor failed. c. The outdoor control board failed.	
5	IPM module protection	a. The IPM board failed. b. The outdoor fan is broken. c. The outdoor fan motor failed. d. The outdoor fan has been blocked. e. The condenser is dirty.	
6	AC voltage higher or lower protection	a. the supply voltage is higher or lower than normal. b. The inner supply voltage of the unit is higher or lower than normal.	
7	Communication failure between the indoor unit and outdoor unit	 a. The communication cable is disconnected or loose. b. The connection between the filter board and the terminal is incorrect or loose c. The communication cable failed. d. The connection between the filter board and the outdoor control board is incorrect or loose. e. The indoor control board failed. f. The PFC board failed. g. The power board failed. h. The outdoor control board failed. 	
8	Current overload protection	a. The fan motor runs abnormally. b. The condenser and evaporator is dirty. c. The air inlet and outlet are abnormal.	
9	Maximum current protection	a. The outdoor control board is short circuited. b. The drive board is short circuited. c. Other components are short circuited.	
10	Communication trouble between outdoor unit and driver	a. The connection wires loose. b. The outdoor board or drive board failed.	
11	Outdoor EEPROM in trouble	a. The EEPROM chip is loose. b. The EEPROM chip inserted incorrectly. c. The EEPROM chip failed.	
12	Outdoor ambient temperature too low or too high protection	Outdoor ambient temperature too low or too high.	

Diagnostic Codes Indoor Unit

Error	Content	The root cause is may be one of the following		
Code				
13	Compressor exhaust temperature too high protection.	a. The compressor exhaust temperature sensor failed. b. The unit refrigerant charge is low		
14	Outdoor ambient temperature sensor failure.	a. The outdoor ambient temperature sensor connector loose. b. The outdoor ambient temperature sensor failed. c. The outdoor control board failed.		
15	Compressor shell temperature too high protection	a. The compressor exhaust temperature sensor connector loose. b. The unit refrigerant charge is low.		
16	Anti-freeze protection with cooling or overload protection with heating in	a. The indoor coil temperature sensor connector loose; b. The indoor coil temperature sensor failed c. The indoor control board failed d. The refrigerant system is abnormal		
17	PFC protection	a. The PFC failed.; b. The outdoor drive board failed.		
18	DC compressor start failure	a. The outdoor drive board failed.; b. The compressor failed.		
19	Compressor drive failure.	a. The outdoor drive board failed.; b. The compressor failed. c. The outdoor control board failed.		
20	Outdoor fan motor locked rotor protection.	 a. The connection of the outdoor fan motor is loose. b. There is something blocking the outdoor fan. c. The fan motor failed. d. The outdoor control board failed. 		
21	Outdoor coil anti-overload protection with cooling.	 a. The unit refrigerant charge is excessive. b. The outdoor fan motor failed. c. The outdoor fan is broken. d. The condenser is dirty. e. The air inlet and air outlet of the indoor unit and the outdoor unit is not normal. 		
22	Compressor pre heating process	It is normal mode in cold weather.		
23	There is a leak in the product	a. There is a leak in the indoor b. There is a leak in the outdoor c. There is a leak in the connecting pipe		
24	Outdoor board chip failure.	a. Using the wrong drive board; b. Using the wrong compressor		
26	Overheated outdoor radiator	a. Radiator sensor fails. b. Detection circuit of the sensor on the control panel fails.		
27	Protection against too high system pressure	a. The pressure switch fails. b. The pressure detection switch on the control panel fails. c. The measured value of system pressure exceeds the limit.		
33	The failure for temperature sensor of indoor room	a. The indoor room temperature sensor loose. b. The indoor room temperature sensor failed. c. The indoor control board failed.		
34	The failure for temperature sensor of indoor coil temperature	a. The indoor coil temperature sensor loose. b. The indoor coil temperature sensor failed. c. The indoor control board failed.		
36	Communication failure between the indoor unit and outdoor unit	 a. The communication cable connector loose. b. The connection between the filter board and the terminal is incorrect or loose. c. The communication cable failed. d. The connection between the filter board and the outdoor control board is incorrect or loose. e. The indoor control board failed. f. The PFC board failed. g. The power board failed. h. The outdoor control board failed. 		

Diagnostic Codes Indoor Unit

Error	Content	The root cause is may be one of the following
Code		
38	Indoor EEPROM failure	a. The EEPROM chip loose; b. The indoor control board failed.
39	Indoor fan motor runs abnormally.	 a. Something blocking the indoor fan motor. b. The fan motor cord is disconnected or loose. c. The fan motor failed. d. The indoor control board failed.
41	The failure for Indoor grounding protection.	The indoor control board failed.
56	There is a leak in the product	a. There is a leak in the indoor b. There is a leak in the connecting pipe
57	The error code will display when the com- munication between refrigerant Sensor and indoor control board have in trouble.	a. The connection between the refrigerant Sensor and control board is loose; b. The indoor control board is failure. c. The wiring of the refrigerant Sensor is failure.
77	Wi-Fi Connection Enabled	Cycle Power on/off
Note: W	hen the refrigerant leakage fails, the fault code	e 56 is displayed actively. The indoor fan is forced to run at the highest speed, and the

Note: When the refrigerant leakage fails, the fault code 56 is displayed actively. The indoor fan is forced to run at the highest speed, and the outdoor unit stops. Other controls do not respond except for the exit the 56 fault operations: After the fault repair is completed, the whole machine will still alarm and prompt, must be through the special operation of the remote controller to clear the fault prompt, the steps are as follows: Step 1: Press one time mode button, and the buzzer ring 1 sounds;

Step 2: Press three times up and down swing button, and the buzzer ring 3 sounds;;

Step 3: Press one time mode button again, and the buzzer ring 1 sounds;

After the preceding steps, the buzzer rings four times, indicating that the 56 fault is rectified. If you do not perform the preceding steps, the buzzer does not ring four times, and the 56 fault cannot be cleared, need to repeat steps 1 to 3 above.

After the refrigerant leakage fault is removed, the indoor fan runs at the maximum speed for 5 minutes, and then the machine will runs in the mode currently set.

Protection Circuit Fault Isolation

Protection diagnosis of the complete machine (all types of protection during operation, i.e. under-voltage, over-voltage and over-current protection)

Note:List all types of protection that may occur to the complete machine and describe the conditions and signs of the start, course and end of such protection.

Voltage protection

Protection against AC input over-voltage/under-voltage

1. Conditions for protection against AC input over-voltage/under-voltage:

If the input AC voltage is greater than "protective over-voltage value" or less than "protective under-voltage value" for five seconds, over-voltage/under-voltage protection starts. [E6]

2. Protection actions against AC input over-voltage/under-voltage

The system stops operation.

3. Conditions for ending AC input over-voltage/under-voltage:

If the input AC voltage is lower than "the protective over-voltage value" -10V, or higher than "the protective under-voltage value" +10V, the over-voltage/ under-voltage protection will be released.

Current protection:

1. Protection against over-current

Conditions for over-current protection: if the current is equal to or greater than "current value for starting the refrigeration current protection (E2 value)" for six seconds, over-current protection starts.

Protection actions against over-current: indoor display screen and outdoor indicator give indications, the compressor and outdoor fan stop, but indoor fan runs normally.

Condition for ending over-current protection: when the current drops below "current value for releasing the refrigeration current protection (E2 value)", over-current protection will be released.

2. Frequency decreasing for over-current

Conditions for over-current frequency decreasing: if the current is equal to or greater than "current value for starting the refrigeration current protective frequency decreasing (E2 value)", over-current frequency decreasing starts.

Over-current frequency decreasing actions: the compressor will decrease frequency at rate of (E2 value)Hz/S. The indoor and outdoor fans run.

Conditions for ending over-current frequency decreasing: when the current drops below "current value for starting the refrigeration current protective prohibition of frequency rising (E2 value)", over-current under-clocking will be released.

Is the limit auto-reset

3. Prohibition of frequency increasing of compressor exhausting

Conditions for prohibition of frequency rising of compressor discharge

Condition 1: in the case of frequency decreasing of compressor discharge, the discharge temperature of the compressor drops below 39.2°F Condition 2: in normal operation, the discharge temperature of compressor reaches 41°F.

Either of the above two conditions is met, prohibition of frequency rising of compressor discharge begins.

Actions relates to prohibition of frequency rising of compressor discharge: the frequency of compressor maintains at the current level, which may decrease as the case requires while cannot rise. The indoor and outdoor fans run.

Condition for ending prohibition of frequency rising of compressor discharge: if the temperature of compressor discharge rises above 42.8°F, prohibition of frequency rising of compressor discharge will be released.

4. Prohibition of frequency for anti-overload of outdoor coiled pipe (cooling condenser temperature high) – To prevent compressor overload from tripping.

Condition for anti-overload prohibition of frequency of outdoor coil pipe: in the case of anti-overload frequency decreasing of outdoor coiled pipe, antioverload prohibition of frequency of the unit begins when the temperature of outdoor coiled pipe drops below "the anti-overload frequency decreasing temperature of outdoor coiled pipe".

Actions relates to anti-overload prohibition of frequency of outdoor coiled pipe: the frequency of compressor maintains at the current level, which may decrease as the case requires while cannot rise. The indoor and outdoor fans run.

Condition for ending anti-overload prohibition of frequency of outdoor coiled pipe: if the temperature of outdoor coiled pipe drops below "temperature to release the anti-overload state of outdoor coiled pipe", anti-overload prohibition of frequency of outdoor coiled pipe will be released.

Compressor Fault Isolation

Judging the connecting terminals of inverter compressor:

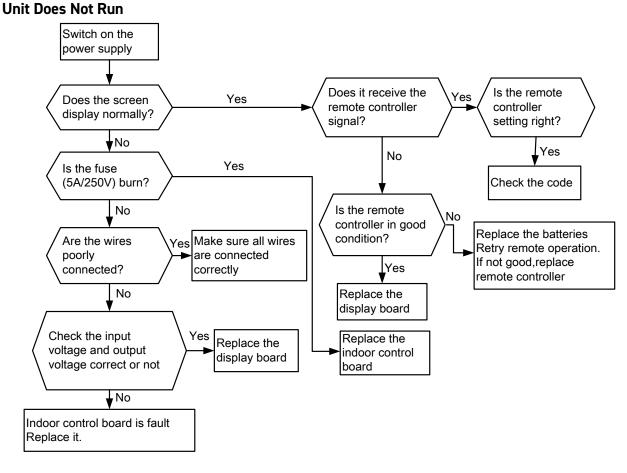
It is impossible to identify terminals U, V and W of inverter compressor with multi-meter. Just connect the terminals in the same way as the original unit when replacing the compressor. A wrong connection will lead to reverse and loud noise of the compressor.

Resistance of compressor coil:

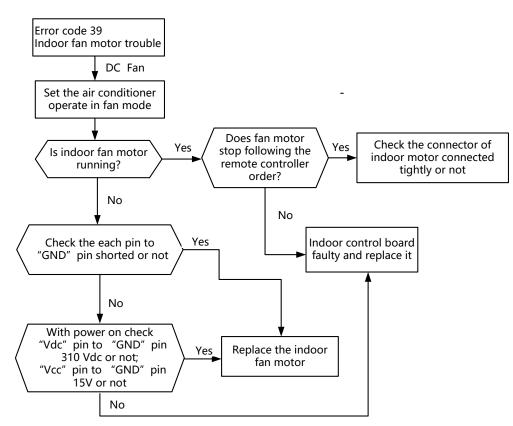
Using an OHM Meter, check resistance from U to V, U to W, and V to W. All of the readings should be within 0.1 ohms of each other. A difference of more than 0.1 ohms indicates that windings may be damaged, and the compressor should be replaced. NOTE: Actual OHM values may vary due to temperature of the compressor.

Electric Filter Board Fault Isolation

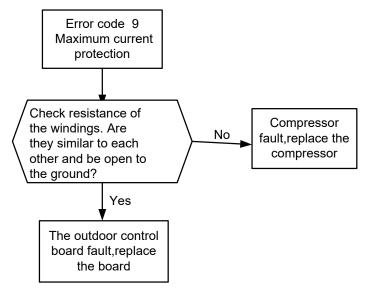
Visual examination: as the circuit is simple, the connection may be checked visually to see whether any loose or poor connection. Voltage test: the voltage at the input end shall be the same as the voltage at the output end.

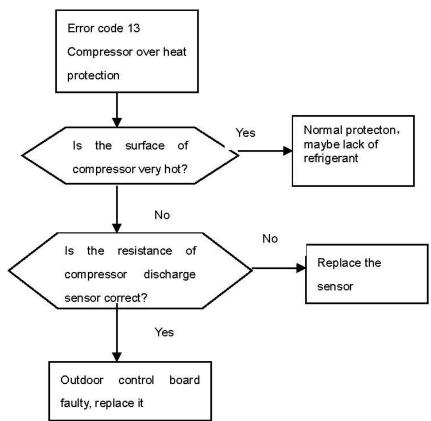

Electrical Communication Fault ISOLATION

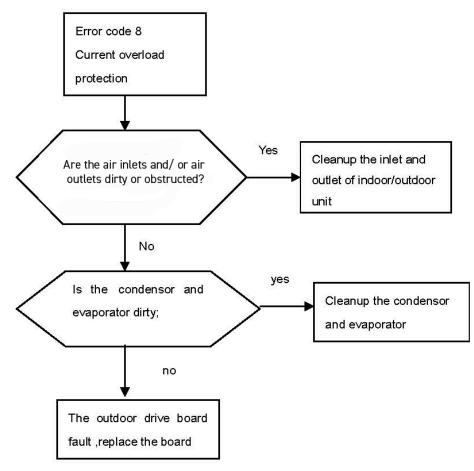
1. Determine whether the connecting cables and tether cables of indoor/outdoor units are correctly wired. If not, change wiring order and test connection. 2. Determine whether there is loose connection.

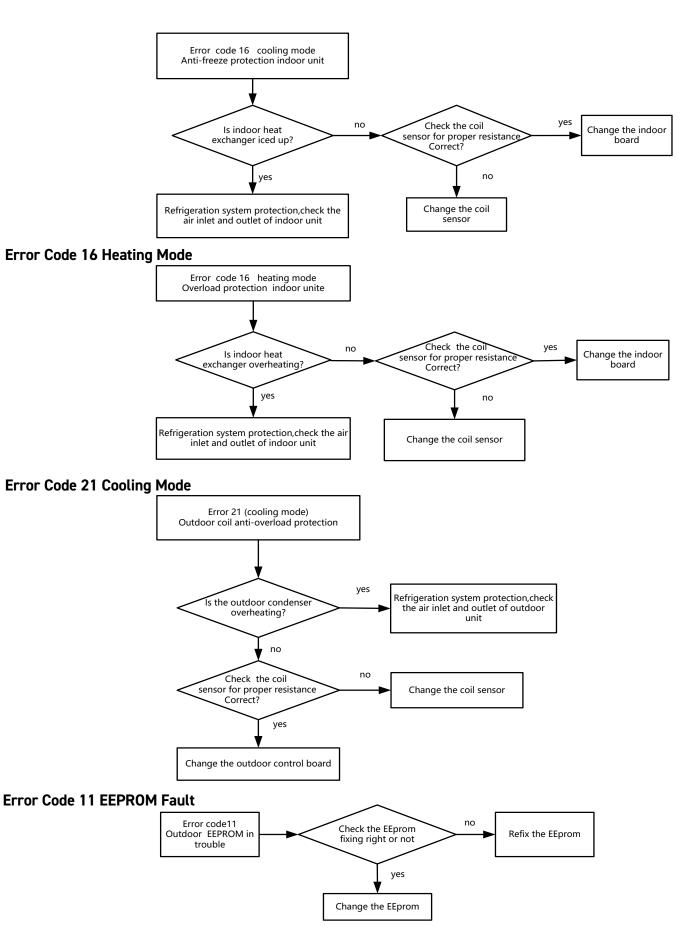

Fasten the connection in the case of loose connection and then conduct verification.

3. Measure the voltage between SI and N with multi-meter and see whether the voltage fluctuates between 0 VDC and 24 VDC.


Replace indoor and outdoor control boards if there are no voltage fluctuations.

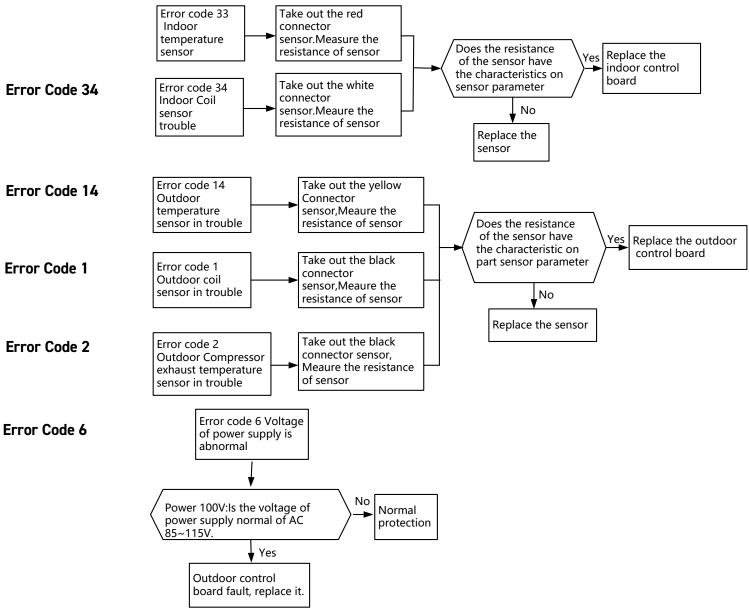

Error Code 39-DC Fan

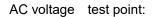

Error Code 9

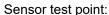


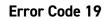
Error Code 13

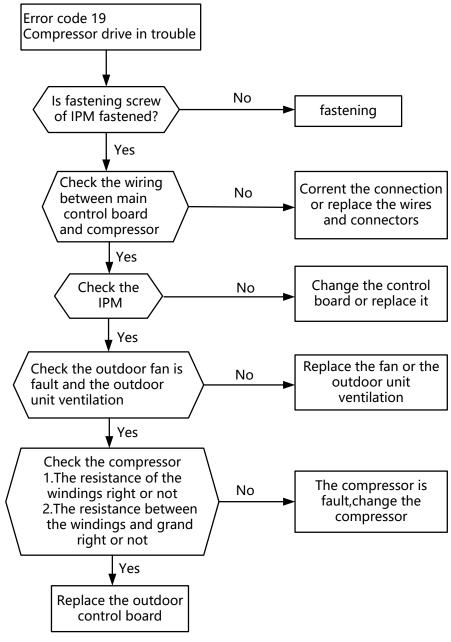
Error Code 8




DC fan motor test point:


Error Code 33


The Voltage protection values is different according to the model



test point:

Check the screw of IPM fastening:

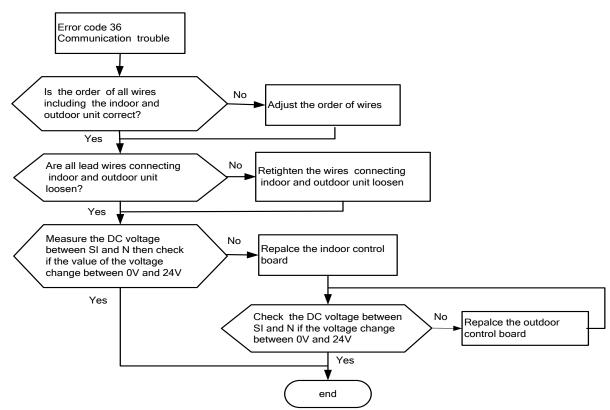
Error Code 19

Forward of IPM P-U/P-V/P-W test :

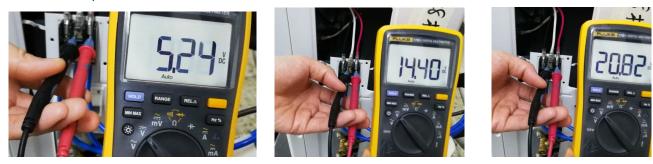
Reverse of IPM P-U/P-V/P-W test:

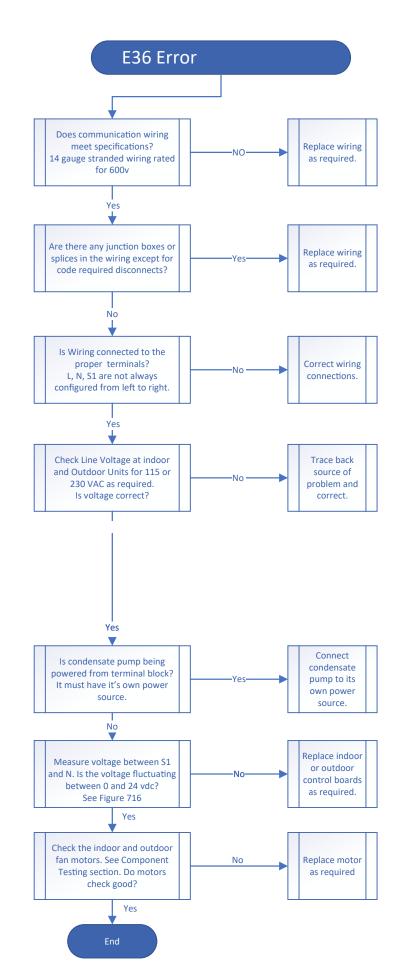
Forward of IPM N-U/N-V/N-W test :

Reverse of IPM N-U/N-V/N-W test :



The resistance of the compressor U-W\V-W





Error Code 36

SI and N test point:

Check from SI to Neutral on the outdoor unit or indoor unit

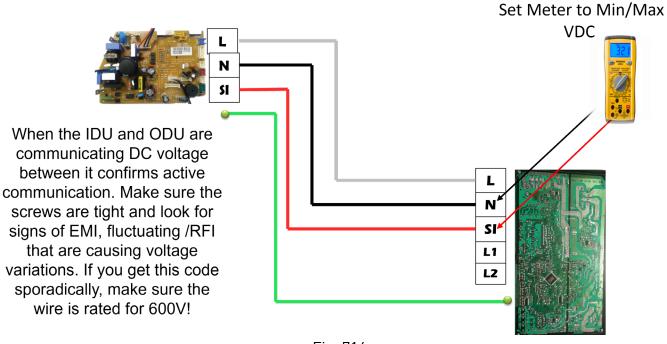


Fig. 716

Blank Display/ Indoor Micro Switch If the Display is blank, check to see if the door is properly closed.

If the door is properly closed, confirm that you have proper line voltage to the indoor unit.

If the indoor unit door is not properly closed, or if the door micro switch has malfunctioned the display may be blank. See Figure 717 When the micro-switch is not engaged, and the power button is depressed, there will be no display and the system will not operate or respond in any way. See Figure 718.

When the Timer On/Clock button is pressed you will see a temperature on the display, but still no system operation. After a few seconds, the display will drop the temperature leaving just the Wi-Fi and Timer icons. Still no indoor unit operation. See Figure 719.

Fig. 717 (Door Micro Switch)

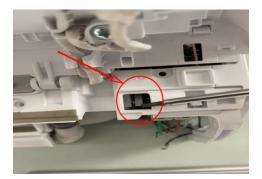
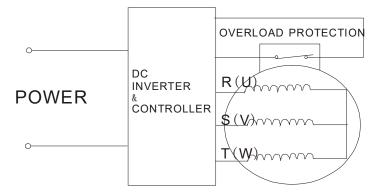


Fig. 718 (Blank Display)


Blank Display/Indoor Unit Door Micro Switch

When the Timer On/Clock button is pressed you will see a temperature on the display, but still no system operation. After a few seconds, the display will drop the temperature leaving just the Wi-Fi and Timer icons. Still no indoor unit operation. See Figure 719.

Fig. 719 (Momentary Temp. Display)

Resistance Test.

The compressor is at fault if the resistance of winding is $0(\text{short circuit}) \text{or} \infty$ open circuit. Common signs compressor is faulty:

- Compressor motor lock.
- Discharge pressure value approaches static pressure value .
- Compressor motor winding abnormality.

Note:

- Don't put a compressor on its side or turn over.
- Assemble the compressor quickly after removing the plugs. Prolonged exposure will damage the internal components of the compressor
- Ensure wiring is correct before operating. Reverse operation will permanently damage the compressor.
- Electric Reactor

Common Problems:

- Sound abnormality
- Runs in a sporadic rhythm.

Capillary Tube

COMPONENT TESTING

Failure to follow these procedures could result in moderate or serious injury.

WARNING

CUT/SEVER HAZARD

Be careful with the sharp edges and corners. Wear protective clothing and gloves, etc.

Failure to do so could result in serious injury.

COOLING MODE

In the cooling mode of operation, high pressure liquid enters the check valve forcing the slide to close the opposite port (liquid line) to the indoor coil. This directs the refrigerant through the cooling capillary tube to the indoor coil.

HEATING MODE

In the heating mode of operation, high pressure refrigerant enters the check valve from the opposite direction, closing the port (liquid line) to the outdoor coil. The flow path of the refrigerant is then through the heating capillary to the outdoor coil.

Failure of the slide in the check valve to seat properly in either mode of operation will cause flooding of the cooling coil. This is due to the refrigerant bypassing the heating or cooling capillary tube and entering the liquid line.

Test the Capillary Tube and Check Valve Assy

Allow unit to run for ten minutes before checking temps in order for unit to stabilize. Units tested at low ambient temps may frost momentarily, but will return to normal once unit pressure stabilizes. If frost does not stop after 10 minutes then a possible restriction or low refrigerant charge may be present.

1. Check the capillary tube temperature by hand where the refrigerant enters the capillary tube. A partial restriction of the capillary tube will be indicated by frost or freezing in that area.

2. If check valve fails closed or the capillary tube is fully restricted, then pressure will increase and pressure switch will open if installed. If no pressure switch is installed, the unit will shut down due to the compressor overload opening. High discharge temperature will be present at the compressor.

3. If check valve fails open the unit will continue to run, but there will be little to no cooling or heating.

In normal operation, the tube will be cooler on the side where the coolant is entering the cap tube then where it exits. If the check valve is stuck open, there will be little difference in temperature.

Reversing Valve A reversing valve is a component of a heat pump that changes the direction of refrigerant flow, allowing the system to function in both heating and cooling modes

It consists of a pressure-operated, main valve and a pilot valve actuated by a solenoid plunger. The solenoid is energized by 24 vac during the heating cycle only.

The single tube on one side of the main valve body is the high-pressure inlet to the valve from the compressor. The center tube on the opposite side is connected to the low pressure (suction) side of the system. The other two are connected to the indoor and outdoor coils. Small capillary tubes connect each end of the main valve cylinder to the "A" and "B" ports of the pilot valve. A third capillary is a common return line from these ports to the suction tube on the main valve body. Four-way reversing valves also have a capillary tube from the compressor discharge tube to the pilot valve.

The plunger assembly in the main valve can only be shifted by the pressure differential between the high and low sides of the system. The pilot section of the valve opens and closes ports for the small capillary tubes to the main valve to cause it to shift.

Checking the Reversing Valve

NOTE: System operating pressures must be near normal before valve can shift. NOTE: You must have normal operating pressures before the reversing valve can shift.

Run the unit in the heating mode then disconnect connector CN 906 from the main PCB and the valve should shift to cooling mode. If valve does not shift - replace the valve(verify the unit is properly charged before replacing valve.) For a stuck valve diagnosis run in the cooling mode and check the temp difference between the suction line from the evaporator and the common suction line at the compressor, if there is more than a 3 °F difference then change the valve.

Checking The Reversing Valve Solenoid

The solenoid coil is an electromagnetic type coil mounted on the reversing valve and is energized during the operation of the compressor in the heating cycle.

- 1. Turn off high voltage electrical power to unit.
- Unplug line voltage lead from reversing valve coil. 2.
- 3. Check for electrical resistance through the coil. If the coil is open replace the coil.

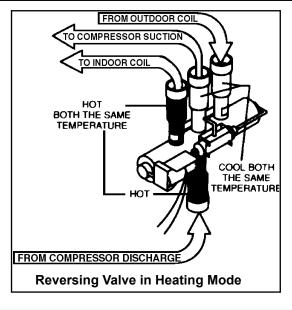
4. Check from each lead of coil to the copper liquid line as it leaves the unit or the ground lug. There should be no continuity between either of the coil leads and ground; if there is, coil is grounded and must be replaced.

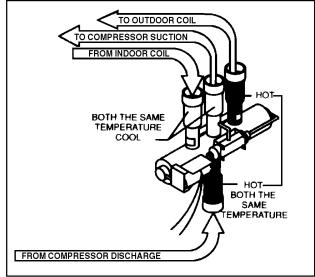
- 5. If coil tests okay, reconnect the electrical leads.
- Make sure coil has been assembled correctly. 6.

NOTE: Do not start unit with solenoid coil removed from valve, or do not remove coil after unit is in operation. This will cause the coil to burn out.

AWARNING

ELECTRIC SHOCK HAZARD Disconnect power to the unit before servicing. Failure to follow this warning could result in serious injury or death.


A WARNING


HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and PPE must be utilized when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

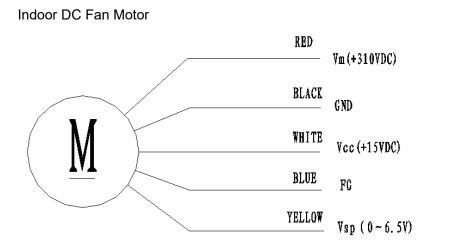
Indoor Fan Motor Testing (230v models)

Power Check: 1. Turn unit on. 2. Check indoor fan connector on main PCB. See Indoor Unit Main PCB Terminal ID There are 5 wires: Voltage for Power (Red) to Ground (Black) = 310 VDC Motor Return Voltage (White) to Ground (Black) = 15 VDC PWM (Yellow) to Ground (Black) = 0-6.5 VDC

3. DC Voltage test

Manually rotate indoor fan motor slowly for several revolutions, and measure voltage "YELLOW" and "GND" on motor. The voltage repeats 0V DC and 5V DC. **Notes:**

- Do not hold motor by lead wires.
- Do not connect or disconnect the molex connecter while power ON.
- Do not drop motor against hard material. Malfunction may not be observed at early stage after such shock. But it may be found later, this type of mishandling voids our warranty.


WARNING

ELECTRIC SHOCK HAZARD

Turn off electric power before service or installation. Extreme care must be used, if it becomes necessary to work on equipment with power applied.

Failure to do so could result in serious injury or death.

1	RED	Vm (+310VDC)
2		
3		
4	BLACK	GND
5	WHITE	Vcc (+15VDC)
6	BLUE	FG
7	YELLOW	Vsp (0~6.5V)

95

Indoor Fan Motor Testing (115v models)

1. Apply power to unit.

2. Check voltage at Indoor motor control connector. See <u>Indoor Unit Main PCB Terminal ID</u>

- a. White to ground VAC (Should read Supply line Voltage).
- b. If No voltage is present replace PCB.

c. If only partial voltage is present ;

Check voltage from black to ground should = 1/2 the supply voltage. d. If no voltage then fan motor internal overheat limit switch [100°C (212°F)] has opened. (If motor is cool to touch- replace motor), if hot proceed to next check.

e. Check red to ground should = 1/2 supply voltage.

- If no voltage present replace PCB
- 3. Remove power from the unit.

4. Check fan motor windings resistance;

a. Remove power from unit.

b. Disconnect indoor motor control connector X842.

c. Check resistance

Red to Black = (red to white) +(black to white). Replace motor if windings check bad.

WARNING

ELECTRIC SHOCK HAZARD

Turn off electric power before service or installation. Extreme care must be used, if it becomes necessary to work on equipment with power applied.

Failure to do so could result in serious injury or death.

Outdoor Fan Motor Testing

Resistance Test.

1. Disconnect the outdoor fan motor plug on the main PCB.

See Outdoor Unit - Main PCB ID

U= Yellow V= Red W= White

3. Using an OHM Meter, check resistance from U to V, U to W, and V to to W.

All of the readings should be within 0.1 ohms of each other. A difference of more than 0.1 ohms indicates that windings may be damaged and the motor should be replaced. NOTE: Actual OHM values may vary due to temperature of the motor.

4. Using a MegOhm Meter, check the motor windings for a short to ground.

Measure the resistance of each winding to ground.

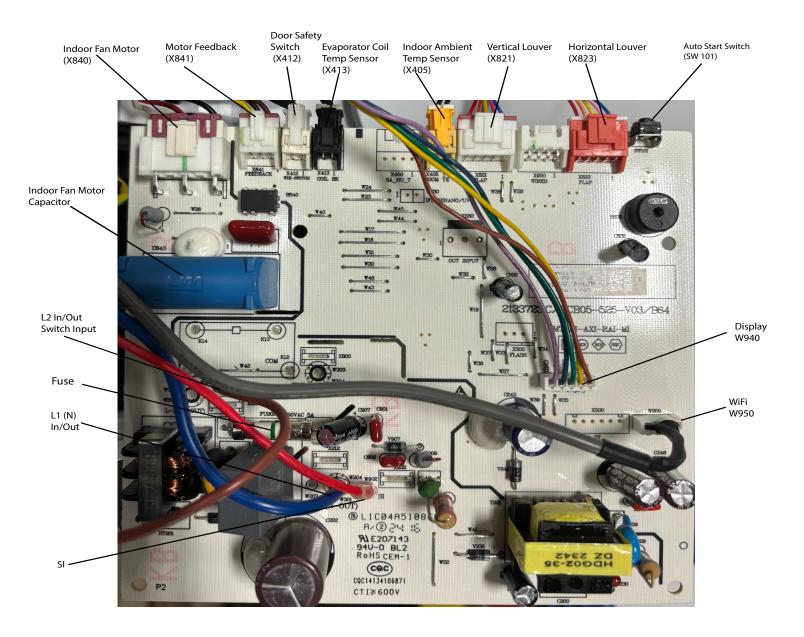
A reading of less than 10 Megohms indicates that the motor windings may be damaged and the motor should be replaced..

Notes:

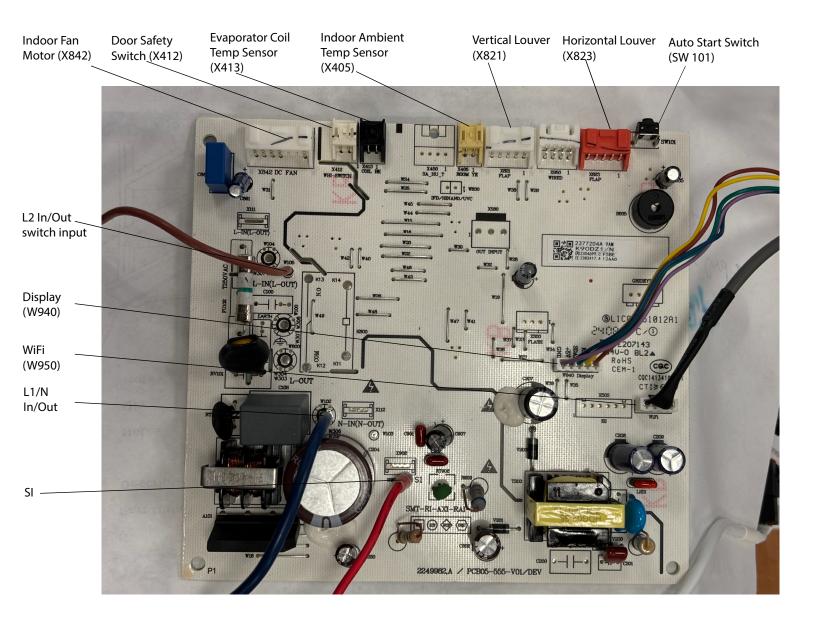
- Do not hold motor by lead wires.
- Do not connect or disconnect the molex connecter while power ON.
- Do not drop motor against hard material. Malfunction may not be observed at early stage after such shock. But it may be found later, this type of mishandling voids our warranty.

WARNING

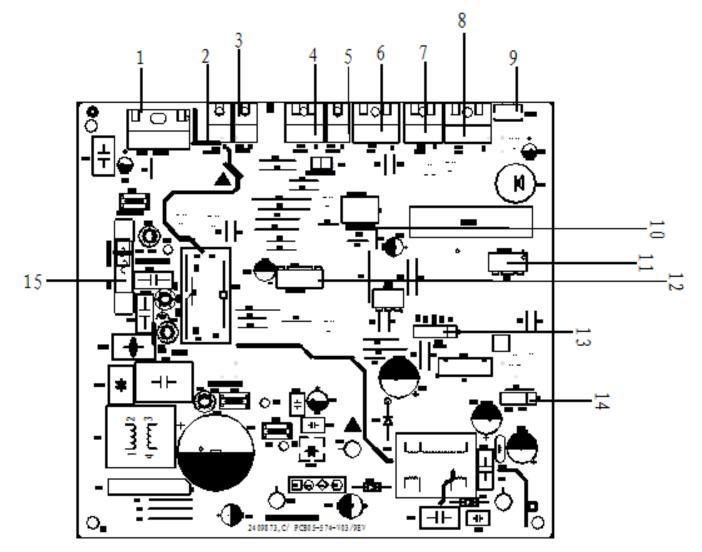
ELECTRIC SHOCK HAZARD


Turn off electric power before service or installation. Extreme care must be used, if it becomes necessary to work on equipment with power applied.

Failure to do so could result in serious injury or death.

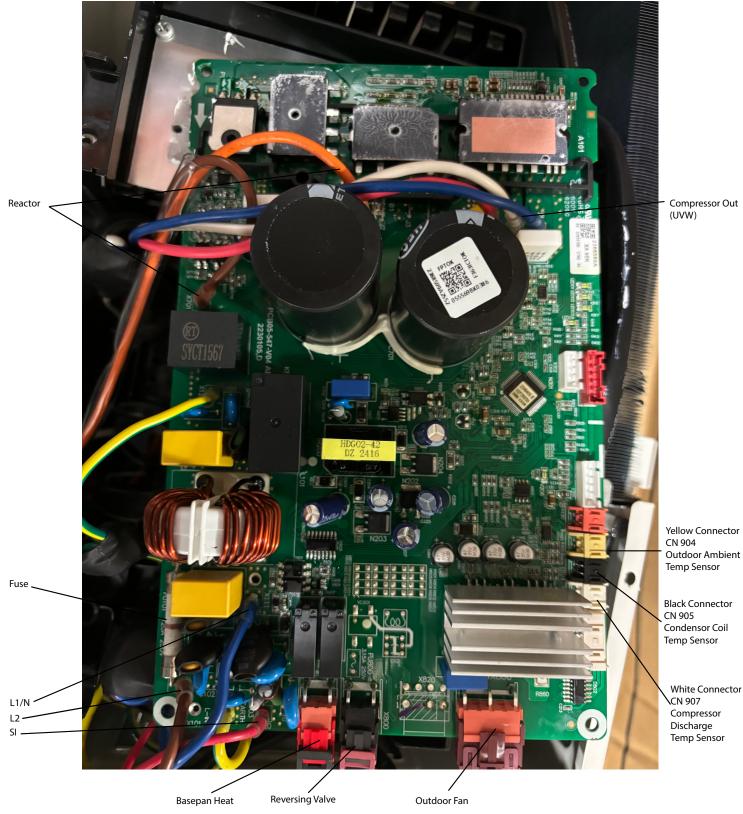

Indoor Unit Main PCB Terminal ID (115v)

FAHFW09A1C, FAHFW12A1C

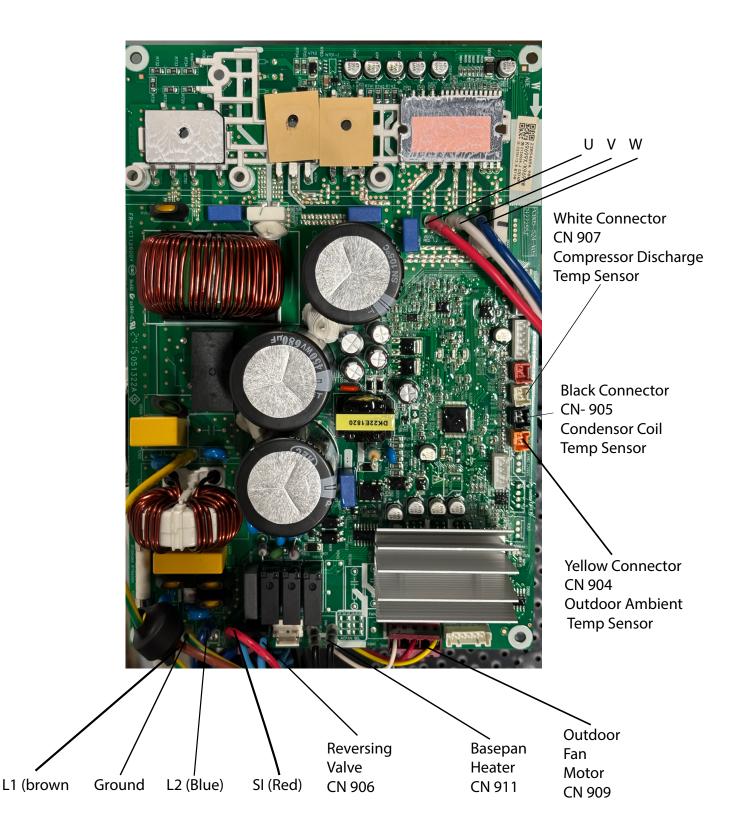

230v Indoor Unit Main PCB Terminal ID (No A2L Sensor Capability)

FAHFW18A3D, FAHFW24A3D, FAHFW36A3D

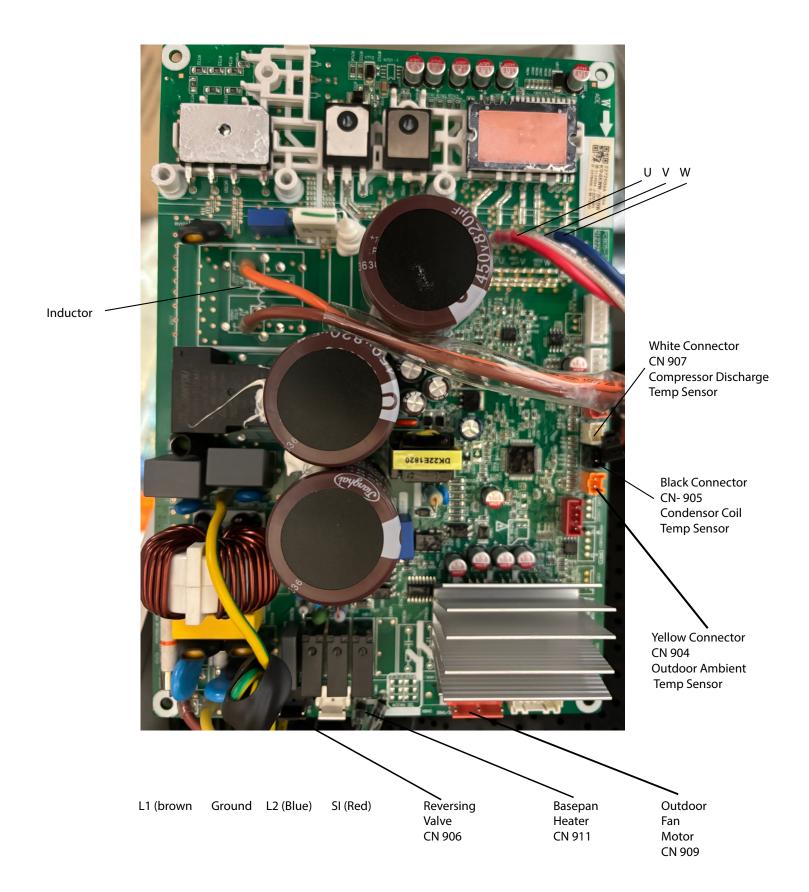
230v Indoor Unit Main PCB Terminal ID (With A2L Sensor Capability)


FAHFW18A3D, FAHFW24A3D, FAHFW36A3D

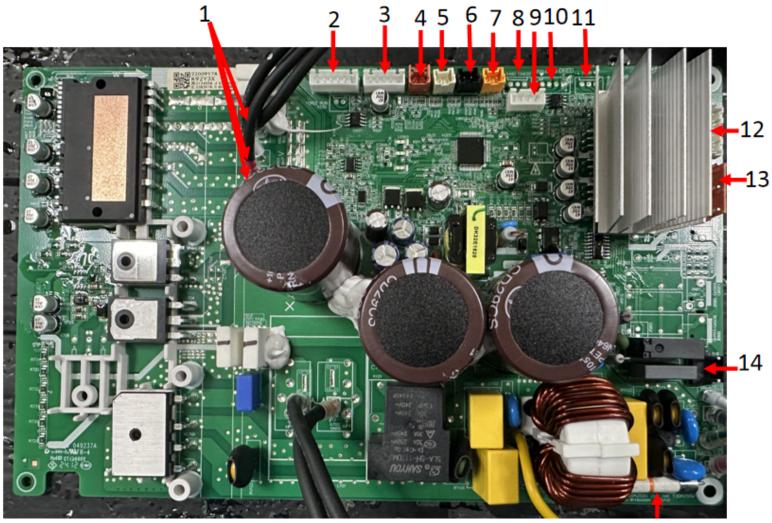
	Terminal Identification Table		
1	Interface of DC motor	9	Switch Button
2	Panel switch	10	Out-input
3	Pipe temperature Sensor	11	Grid eye
4	Temperature and Humidity Sensor	12	REF SENSOR
5	Room temperature Sensor	13	Display Interface
6	Left & Right Swing	14	Wifi Interface
7	Wired	15	Protective tube
8	Up & Down Swing		
	Figure 606		


115v Outdoor Unit - Main PCB Terminal ID

FPHSR09A1C, FPHSR12A1C



101


Outdoor Unit - Main PCB Terminal ID FSHSR18B3D

Outdoor Unit - Main PCB Terminal ID FSHSR24B3D

Outdoor Unit - Main PCB Terminal ID FSHSR36B3D

15

1	Compressor
2	EE
3	Tooling
4	temperature
5	Discharge temperature
6	Coil temperature
7	Outdoor Temperature
8	Compressor AD-PRESS

9	Program writing
10	DRED
11	Model Selection
12	Electronic expansion value
13	DC-Fan
14	4-WAY value
15	FUSE

AWARNING: Electrical Shock Hazard

Disconnect all power to the unit before starting maintenance. All electrical connections and wiring MUST be installed by a qualified electrician and conform to all codes which have jurisdiction. Failure to do so can result in property damage, severe electrical shock or death.

AWARNING: This Product uses R-32 Refrigerant

Do not use means to accelerate the defrosting process or to clean, other than those recommended by the manufacturer.

When not installed, the appliance shall be stored in a room without continuously operating ignition sources (for example: open flames, an operating gas appliance or an operating electric heater.

Do not pierce or burn.

Be aware that refrigerants may not contain an odor.

AWARNING: Refrigeration System under High pressure

Do not puncture, heat, expose to flame or incinerate. Only certified refrigeration technicians should service this equipment. R-32 systems operate at higher pressures than R22 equipment. Appropriate safe service and handling practices must be used.

A Warning: Prior to beginning work on systems containing FLAMMABLE REFRIGERANTS, safety checks are necessary to ensure that the risk of ignition is minimized.

NOTICE: Individuals working on these units must be EPA 608 Certified along with A2L Refrigerant Training.

Warning: Refrigerant R-32 cannot be used as a retrofit for R-410A refrigerant. The mixing of refrigerant across classes is prohibited. R-32 Is not a drop in replacement for R-410A.

General Work Area: All maintenance staff and others working in the installation area shall be instructed on the nature of work being carried out. Work in confined spaces as defined by the Occupational Safety And Health Administration shall be avoided.

Warning: Job site should be examined for safety hazards such as flammable vapors, ignition sources, ventilation and confined spaces. Create a safe perimeter with barriers and signs designating a flammable area.

Warning: Work shall be undertaken under a controlled procedure so as to minimise the risk of a flammable gas or vapor being present while the work is being performed.

Check for presence of refrigerant:

- The area shall be checked with an appropriate refrigerant detector prior to and during work, to ensure the technician is aware of potentially toxic or flammable atmospheres.
- Ensure that the leak detection equipment being used is suitable for use with all applicable refrigerants, i.e. non-sparking, adequately sealed or intrinsically safe.
- Under no circumstances shall potential sources of ignition be used in the searching for or detection of refrigerant leaks. A halide torch (or any other detector using a naked flame) shall not be used.
- The following leak detection methods are deemed acceptable for all refrigerant systems:

1. Electronic leak detectors may be used to detect refrigerant leaks but, in the case of FLAMMABLE REFRIGERANTS, the sensitivity may not be adequate, or may need re-calibration. (Detection equipment shall be calibrated in a refrigerant-free area.) Ensure that the detector is not a potential source of ignition and is suitable for the refrigerant used. 2. Leak detection fluids are also suitable for use with most refrigerants but the use of detergents containing chlorine shall be avoided as the chlorine may react with the refrigerant and corrode the copper pipe-work. If a leak is suspected, all flame sources shall be removed/extinguished.

If a leakage of refrigerant is found which requires brazing, all of the refrigerant shall be recovered from the system per EPA guidelines.

Presence of fire extinguisher: If any hot work is to be conducted on the refrigerating equipment or any associated parts, a class ABC Rated fire extinguishing equipment shall be available to hand. Have a class ABC Rated fire extinguisher adjacent to the charging area.

General Information

Warning:

No ignition sources: No person carrying out work in relation to a REFRIGERATING SYSTEM which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, should be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks.

Ventilated Area: Ensure that the area is in the open or that it is adequately ventilated before accessing the refrigerant in the system or conducting any hot work. A degree of ventilation shall continue during the period that the work is carried out. The ventilation should safely disperse any released refrigerant away from the work area or external to building envelope.

During Repairs To Sealed Components: All power must be removed from the equipment being worked on prior to any removal of sealed covers, etc. If it is absolutely necessary to have an electrical supply to equipment during servicing, then a constant leak detector shall be located at the most critical point to warn of a potentially hazardous situation.

Checks And Repairs To Electrical Devices:

- Repair and maintenance to electrical components shall include initial safety checks and component inspection procedures. If a fault exists that could compromise safety, then no electrical supply shall be connected to the circuit until it is satisfactorily dealt with. If the fault cannot be corrected remove power supply to unit. **DO NOT OPERATE.**
- Initial safety checks shall include:
 - •That capacitors are discharged: this shall be done in a safe manner to avoid possibility of sparking;

•That no live electrical components and wiring are exposed while charging, recovering or purging the system; •Verify unit is properly grounded.

- Particular attention shall be paid to the following to ensure that by working on electrical components, the casing is not altered in such a way that the level of protection is affected. This shall include damage to cables, excessive number of connections, terminals not made to original specification, damage to seals, incorrect fitting of glands, etc.
- Ensure that the apparatus is mounted securely.
- Ensure that seals or sealing materials have not degraded to the point that they no longer serve the purpose of preventing the ingress of flammable atmospheres. Replacement parts shall be in accordance with the manufacturer's specifications.

•

The following is a list of important considerations when working with R-32 equipment:

- R-32 pressure is similar to R-410A and approximately 60% higher than R-22 pressure.
- R-32 cylinders must not be allowed to exceed 125°F, they may leak or rupture.
- R-32 must never be pressurized with a mixture of compressed air, it may become MORE flammable.
- Servicing equipment and components must be specifically designed for use with R-32 and dedicated to prevent contamination.
- Manifold sets must be equipped with gauges capable of reading 750 psig (high side) and 200 psig (low side), with a 500-psig low-side retard.
- Gauge hoses must have a minimum 750-psig service pressure rating.
- Recovery cylinders must have a minimum service pressure rating of 400 psig, (DOT 4BA400 and DOT BW400 approved cylinders).
- POE (Polyol-Ester) lubricants must be used with R-32 equipment.
- To prevent moisture absorption and lubricant contamination, do not leave the refrigeration system open to the atmosphere for extended periods of time.
- If unit refrigerant is low, recover the refrigerant, evacuate, and recharge unit to nameplate amount.
- If there is any amount of refrigerant in the system charge from the low side.
- Always charge by liquid inverted.

Verify with tool manufacturers that all tools used during this repair are non-sparking and can be used with A2L Refrigerants.

No halide torches for leak testing.

Refrigerant monitors or detectors must be used to detect refrigerant in the work area.

- R-32 A2L Refrigerant Recovery System.
- Vacuum Pump rated for A2L refrigerant (capable of 300 microns or less vacuum.)
- Nitrogen bottle with purging and pressurizing capabilities up to 550 psi.
- Oxy/ Acetylene torch or similar equipment utilized for brazing.
- Non-Sparking (Not Halide)Electronic Leak Detector rated for detecting A2L refrigerant.
- Digital refrigerant scale
- Refrigeration Gauges rated for A2L Refrigerants with temp scales for R-32 refrigerant.
- Gauge Manifold (Right handed threads).
- A2L compatible Vacuum Gauge capable of 300 microns or less.
- Nitrogen regulator for purging and testing, rated to 800 psi. (Capable of low psi flow)
- Pipe tubing cutter.
- Refrigerant recovery cylinder. (Flammable A2L label)
- Ventilation fan.
- Class ABC fire extinguisher.
- Process Tube adapter kit
- Recovery access tool.
- Purge hose fittings
- Pinch off and opening tools

Required Equipment

Recovery access tool

Pinch off and opening tools

Process tube adapter kit

Purge hose fittings

Refrigerant Removal, Recovery, and Evacuation

NOTE: When accessing the refrigerant in the system to make repairs or for any other purpose, conventional procedures shall be used. However, for FLAMMABLE REFRIGERANTS (R-32 is classified in the A2L group for mildly flammable refrigerants) it is important that best practice is followed since flammability is a consideration. Follow all EPA 608 regulations and procedures along with AHRI 15 Best Practices for A2L refrigerants.

Warning: Ensure sufficient ventilation at the repair place.

Warning: Ensure there are no open flame sources or hot surfaces that exceed 1200°F in the work area.

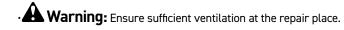
Warning: Discharge capacitors in a way that won't cause any spark. The standard procedure to short circuit the capacitor terminals usually creates sparks.

NOTICE: Ensure that the following precautions are taken prior to opening the sealed system.

- Verify Recovery machine is rated for A2L refrigerants.
- Mark the Job site inspection area as flammable work zone using appropriate signs.
- Utilize a Refrigerant leak detector or refrigerant monitor to sense the area for the presence of refrigerants.
- Disconnect all power supply to unit.
- Properly ground all equipment and hoses along with tank to prevent a static build up .
- Ensure adequate ventilation is provided for the job site.
- Do not mix A2L refrigerant Gages and hoses with other refrigerants.
- Keep exposure of refrigerant to Air to as minimum as possible (creates a dangerous condition).
- Under no circumstances is the mixing of refrigerants in the recovery cylinders allowed and should be strictly avoided at all times. Do not introduce oxygen into any recovery cylinders.

1. Recover refrigerant to EPA sec. 608 standards. If a low charge is suspected weigh recovered refrigerant and compare to unit nameplate. Refer to Figure G.3

NOTE: DO NOT RECOVER TO A VACUUM PRIOR TO FLUSHING WITH NITROGEN. STOP RECOVERY AT 0-5 PSI.


- 3. Purge system with dry nitrogen.(3-5 minutes).
- 4. Perform an evacuation to 500 microns and break vacuum with Dry Nitrogen.
- 5. Re-purge the unit for 3-5 minutes or until the nitrogen flows out both process tubes.
- 6. Re-evacuate unit to 500 microns and break vacuum with Dry Nitrogen.
- 8. Open the refrigerant circuit by cutting out components.

Transportation

Be aware that local, state, and national codes exist that regulate the transportation of flammable gases. Be sure to become informed of the regulations and always stay compliant.

R-32 SEALED SYSTEM REPAIR

Component Replacement/Brazing

Warning: Presence of fire extinguisher. If any hot work is to be conducted on the refrigerating equipment or any associated parts, have a ABC class fire extinguisher available to hand.

Warning: No person carrying out work in relation to a REFRIGERATING SYSTEM which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, should be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks.

Warning: Ensure there are no open flame sources or hot surfaces that exceed 1200°F in the work area.

NOTE: When brazing is required, the following procedures shall be carried out in the right order:

1. Remove and recover refrigerant, and evacuate the system. Refer to the refrigerant removal, recovery, and evacuation section of this manual.

Warning: Under no circumstances shall potential sources of ignition be used in the searching for or detection of refrigerant leaks. A halide torch (or any other detector using a naked flame) shall not be used.

2. Perform a check of the work area for the presence of flammable refrigerant prior to brazing or performing any hot work. Use a non-Sparking (Not Halide) A2L certified Electronic Leak Detector rated for detecting R-32 refrigerant.

3. Re-pipe all repairs and install all components to sealed system.

4. Purge nitrogen through the unit. at approximately 2-3 psi through the duration of the brazing process. (Nitrogen must be purging through the unit while any brazing is being performed.)

5. Pressure test unit to 550 psi minimum and hold pressure for 30 minutes minimum. Inspect for any leaks with a leak detection fluid and repair as required. Repeat as required until system passes leak test.

6. Triple evacuate the unit to achieve a 500 micron level.

7. Pressurize nitrogen to 550 psi and leak test all connections with a leak detection fluid. Repair any leaks found.

8. Reassemble sealed enclosures accurately. If seals are worn, replace them.

9. Charge the system with the amount of refrigerant specified on the model nameplate. <u>Refer to the refrigerant charging section of this manual for charging procedures.</u>

R-32 SEALED SYSTEM REPAIRS

Refrigerant Charging

AWARNING: Electrical Shock Hazard

Disconnect all power to the unit before starting maintenance. All electrical connections and wiring MUST be installed by a qualified electrician and conform to all codes which have jurisdiction. Failure to do so can result in property damage, severe electrical shock or death.

AWARNING: This Product uses R-32 Refrigerant

Do not use means to accelerate the defrosting process or to clean, other than those recommended by the manufacturer.

When not installed, the appliance shall be stored in a room without continuously operating ignition sources (for example: open flames, an operating gas appliance or an operating electric heater. Do not pierce or burn.

Be aware that refrigerants may not contain an odor.

AWARNING: Refrigeration System under High pressure

Do not puncture, heat, expose to flame or incinerate. Only certified refrigeration technicians should service this equipment. R32 systems operate at higher pressures than R22 equipment. Appropriate safe service and handling practices must be used.

WARNING: Freeze Hazard

Proper safety procedures must be followed, and all PPE must be utilized when working with liquid refrigerant. Failure comply could result in minor to moderate injury.

NOTE: Always weigh in refrigerant based on the model nameplate.

Warning:

- Ensure that contamination of different refrigerants does not occur when using charging equipment.
- Hoses or lines shall be as short as possible to minimise the amount of refrigerant contained in them.
- Charge unit with refrigerant cylinder in the inverted position to obtain liquid refrigerant.
- Charge the unit according to the amount on the name plate matching the unit.
- Extreme care shall be taken not to overfill the REFRIGERATING SYSTEM.
- Prior to recharging a system, it shall be pressure-tested with the dry nitrogen.

The acceptable method for charging the sealed system is the Weighed in Charge Method. The weighed in charge method is applicable to all units. It is the preferred method to use, as it is the most accurate.

The weighed in method should always be used whenever a charge is removed from a unit such as for a leak repair, compressor replacement, or when there is no refrigerant charge left in the unit. To charge by this method, requires the following steps:

Warning: Ensure sufficient ventilation at the repair place.

Warning: Ensure there are no open flame sources or hot surfaces that exceed 1200°F in the work area.

1. Recover Refrigerant in accordance with EPA regulations. (Refer to <u>Refrigerant Removal, Recovery, and Evacuation Section).</u>

NOTE: If a low charge is suspected weigh recovered refrigerant and compare to unit nameplate. **NOTE:** Service ports are located on the side of the unit. See figure G.3.

2. Weigh in the refrigerant charge with the proper quantity of R-32 refrigerant per model nameplate.

3. Perform triple evacuation.

NOTE: EPA Section 608 regulations require that if a system is charged with flammable refrigerant it must have red markings on the service ports.

Refrigerant

Safety Group

A2L

R-32 SEALED SYSTEM REPAIRS

Refrigerant Charging Triple Evacuation

Friedrich requires all installations are Leak Checked and Evacuated in accordance to the "triple evacuation" process. This process promotes a dry tight refrigeration system before opening the service valves. It recommended that a single port refrigeration manifold and hoses rated over 31.5 psi be used. Refrigeration hose valves, along with a vacuum pump and micron gauge, must be used to ensure the system can be vacuumed and held under 500 microns. Check all equipment and hoses for proper usage and leaks before beginning.

1. 1st Nitrogen Pressure Test:

Ensure all refrigeration connections are properly flared, secured, and torqued to their respective settings.

Pressurize the system with nitrogen to 550 psi. Soap all connections with an approved refrigerant leak detection solution.

The pressure in the system must hold for one hour respective to the environmental conditions and should not vary less than 540psi. If pressure can not be adequate held, check integrity of flares and torque specifications. Once pressure is held adequately, purge the nitrogen charge to system pressure of 5-10 psi. DO NOT RETURN TO ATMOSPHERIC PRESSURE.

2. 1st Vacuum Micron Test:

Connect hoses and vacuum pump to the outdoor unit as shown in Fig. 436. Start the vacuum pump and vacuum to 1000 microns. Close the valve to the vacuum pump and check for micron rise for 15 minutes. If microns rise to near atmospheric pressure, there is a potential leak; repeat step 1. If microns rise over 5000, the system is very wet and will require further nitrogen purges.

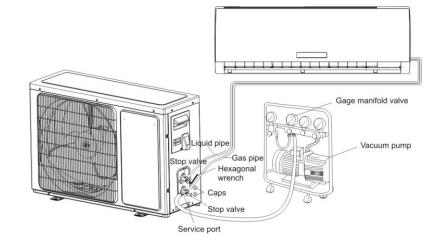
3. 2nd Nitrogen Break:

Once the system holds below 5000 microns, reconnect the nitrogen tank break the system vacuum with 30-50 psi of nitrogen. Wait 5 minutes, then purge to 5-10 psi. DO NOT RETURN TO ATMOSPHERIC PRESSURE.

4. 2nd Vacuum Micron Test:

Reconnect vacuum pump and gauge and begin evacuation. Vacuum system to 500 microns. Close vacuum valve and check for micron rise. Vacuum should hold under 1000 microns. Repeat steps 3 and 4 until achieved.

5. 3rd Nitrogen Break:


Once the system holds below 1000 microns, reconnect the nitrogen tank break the system vacuum with 30-50 psi of nitrogen. Wait 5 minutes, then purge to 5-10 psi. DO NOT RETURN TO ATMOSPHERIC PRESSURE.

6. 3rd Final Vacuum Micron Test:

Reconnect vacuum pump and gauge and begin evacuation. Vacuum system to 300 microns. Close vacuum valve and check for micron rise. Vacuum should hold under 500 microns. Repeat steps 3 and 4 until achieved. Once held under 500 microns, the system is considered dry and tight. 7. Charging the system:

Unscrew Service Valve Caps to expose the inner hexagon head. Use an allen-head spanner or service wrench with appropriate adapter to release the refrigerant into the system. If the calculated line set length is over 2 ft, weight in the additional charge with an approved refrigerant scale as needed. Refer to Table G.1.

Capacity (Btu/h)	Refrigerant Pre-Charge	Pipe Size		Standard	Max.	Max. Length	Additional
		LIQUID	GAS	Length (ft)	Elevation H (ft)	L (ft)	Refrigerant (oz/ft)
FSHSR09B1C	21.2 oz	1/4"	3/8"	25	50	66	.22
FSHSR12B1C	21.9	1/4"	3/8"	25	50	66	.22
FSHSR18B3D	45.9 oz	1/4"	1/2"	25	50	100	.22
FSHSR24B3D	47.6	3/8"	5/8"	25	50	100	.32
FSHSR36B3D	72.4	3/8"	5/8"	25	50	100	.40
Table G.2							

Figure G.3

R-32 SEALED SYSTEM REPAIRS

Compressor Replacement

ELECTRIC SHOCK HAZARD

Turn off electric power before service or installation. Extreme care must be used, if it becomes necessary to work on equipment with power applied.

Failure to do so could result in serious injury or death.

HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and PPE must be utilized when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

WARNING

EXPLOSION HAZARD

The use of nitrogen requires a pressure regulator. Follow all safety procedures and wear protective safety clothing etc.

Failure to follow proper safety procedures could result in serious injury or death.

ACAUTION

FREEZE HAZARD

Proper safety procedures must be followed, and proper protective clothing must be worn when working with liquid refrigerant.

Failure to follow these procedures could result in minor to moderate injury.

WARNING

NEVER, under any circumstances, liquid charge a rotary-compressor through the LOW side. Doing so would cause permanent damage to the new compressor. Use a charging adapter. 1. Be certain to perform all necessary electrical and refrigeration tests to be sure the compressor is actually defective before replacing.

2. Recover all refrigerant from the system though the process tubes. Refer to Refrigerant Removal, Recovery, and Evacuation Section of this manual).

PROPER HANDLING OF RECOVERED REFRIGERANT ACCORDING TO EPA REGULATIONS IS REQUIRED.

3. After all refrigerant has been recovered, cut and remove compressor. Be certain to have both suction and discharge process tubes open to atmosphere.

4. Install the replacement compressor.

CAUTION: Seal all openings on the defective compressor immediately. Compressor manufacturers will void warranties on units received not properly sealed. Do not distort the manufacturers tube connections.

5. Braze all connections. Refer to the <u>Component Replacement/Brazing</u><u>section</u> of this manual.

6. Charge system with proper amount of refrigerant per the model nameplate. Refer to the <u>Refrigerant charging section of this manual</u>.

R-32 SEALED SYSTEM REPAIR

Replace The Reversing Valve

HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and PPE must be utilized when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

WARNING

EXPLOSION HAZARD

The use of nitrogen requires a pressure regulator. Follow all safety procedures and wear protective safety clothing etc.

Failure to follow proper safety procedures could result in serious injury or death.

NOTICE

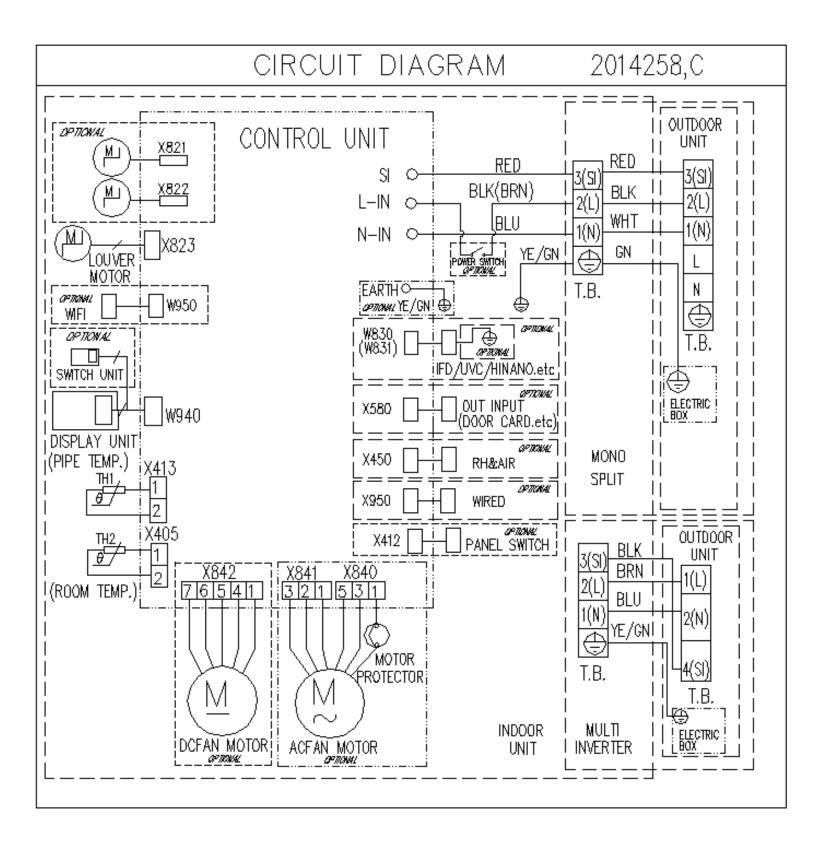
FIRE HAZARD The use of a torch requires extreme care and proper judgment. Follow all safety recommended precautions and protect surrounding areas with fire proof materials. Have a fire extinguisher readily available. Failure to follow this notice could result in moderate to serious property damage.

1. Recover all refrigerant from the system though the process tubes. Refer to Refrigerant Removal, Recovery, and Evacuation Section of this manual).

PROPER HANDLING OF RECOVERED REFRIGERANT ACCORDING TO EPA REGULATIONS IS REQUIRED.

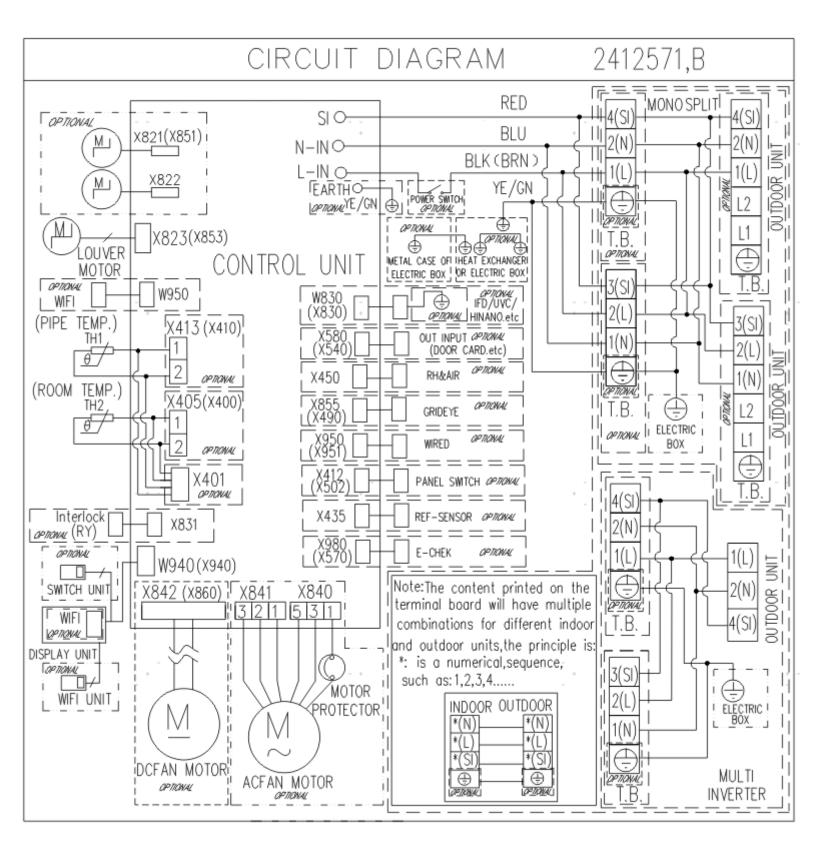
2. Remove solenoid coil from reversing valve. If coil is to be reused, protect from heat while changing valve.

NOTE: When brazing a reversing valve into the system, it is of extreme importance that the temperature of the valve does not exceed 250°F at any time.

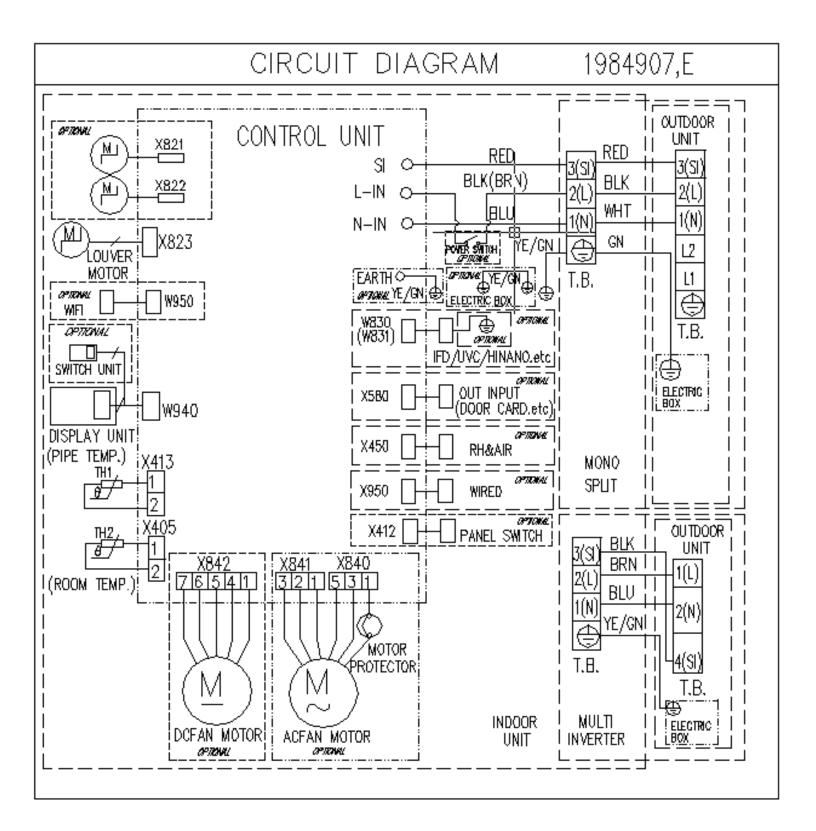

Wrap the reversing valve with a large rag saturated with water. "Re-wet" the rag and thoroughly cool the valve after each brazing operation of the four joints involved.

The wet rag around the reversing valve will eliminate conduction of heat to the valve body when brazing the line connection.

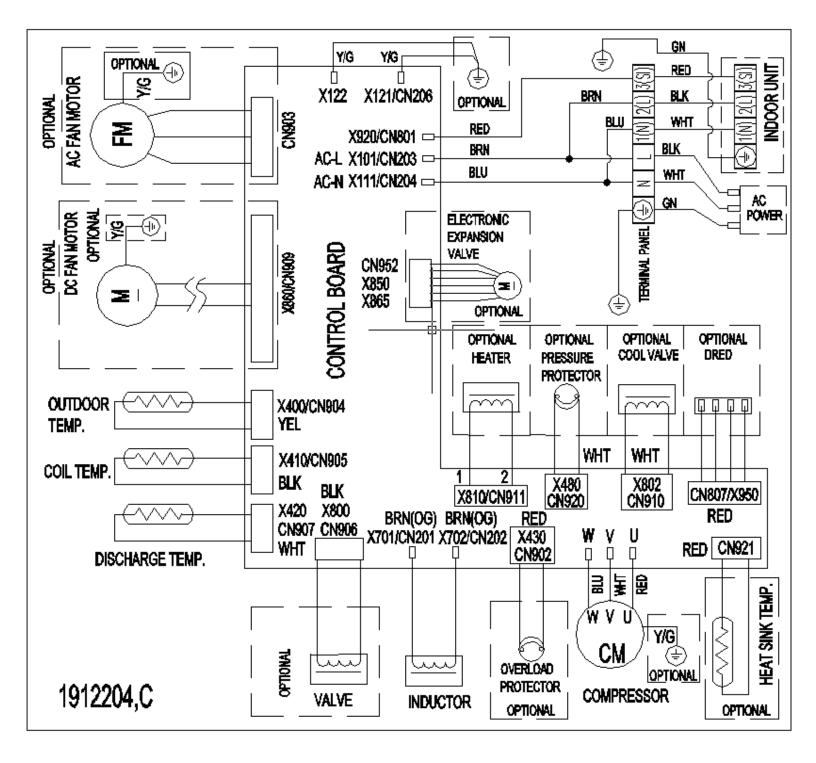
- 3. Cut all lines from reversing valve. Refer to the Brazing section of this manual.
- 4. Clean all excess braze from all tubing so that they will slip into fittings on new valve.
- 5. Remove solenoid coil from new valve.
- 6. Protect new valve body from heat while brazing with plastic heat sink (Thermo Trap) or wrap valve body with wet rag.
- 7. Fit all lines into new valve and braze lines into new valve.
- 8. Braze all connections. Refer to the Brazing section of this manual.
- 9. Pressurize with nitrogen to 550 psi and leak test all connections with a leak detection fluid. Repair any leaks found.
- 10. Once the sealed system is leak free, install solenoid coil on new valve.
- 11. Charge system with proper amount of refrigerant per the model nameplate. Refer to the refrigerant charging section of this manual.


115v Indoor Unit

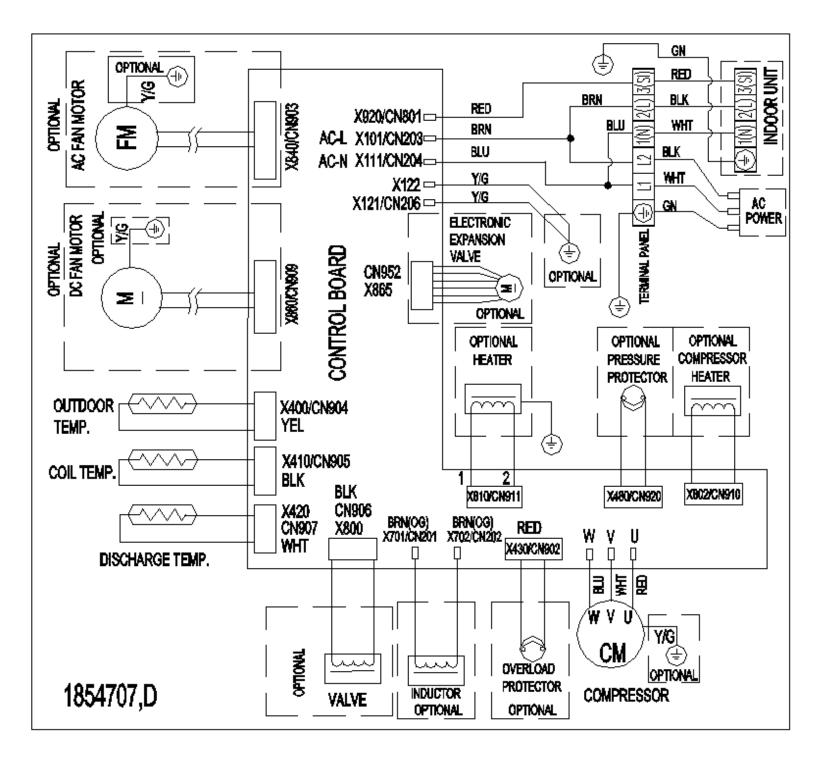
FAHSW091AC, FAHSW12A1C


230v Indoor Unit with A2L Sensor Capability

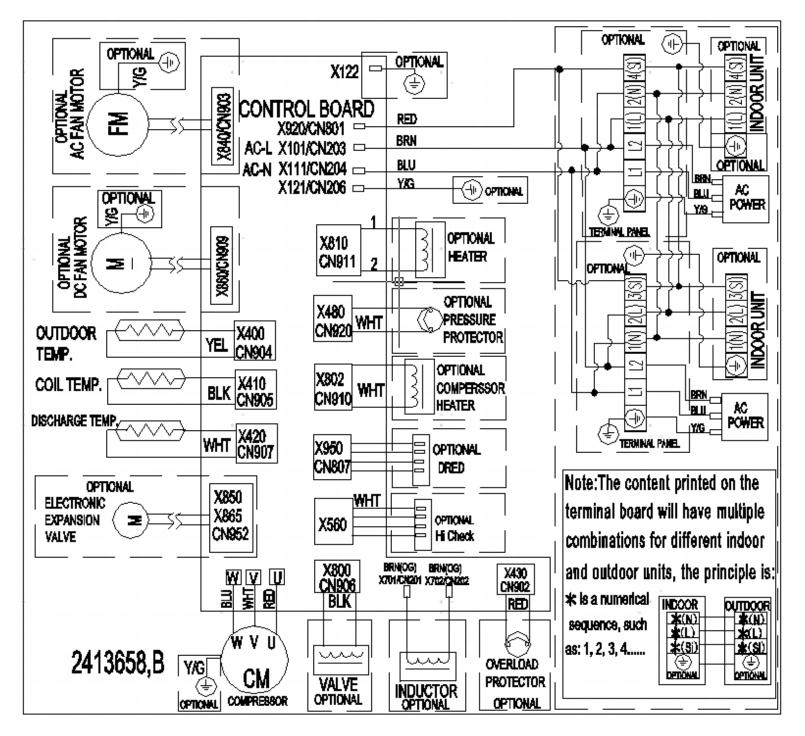
FAHFW18A3D, FAHFW24A3D, FAHSW36A3D


230v Indoor Unit Without A2L Sensor Capability

FAHFW18A3D, FAHFW24A3D, FAHSW36A3D


115v Outdoor Unit

FPHSR09A1C, FPHSR12A1C


230V Outdoor Unit

FSHSR18A3D, FSHSR24A3D, FSHSR36A3D

230V Outdoor Unit FSHSR36A3D

APPENDIX

Thermistor Resistance Values

1. THE PARAMETER OF THE INDOOR COIL AND INDOOR ROOM SENSOR , THE PARAMETER OF THE OUTDOOR COIL AND OUTDOOR AMBIENT TEMP SENSOR:

(R(0)=15k B(0/100)=3450)

Temperature(°C)	Resistance(k)	Voltage(V)	Temperature(°C)	Resistance(k)	Voltage(V)
-20	38.757	0.58143512	31	4.292	2.715076661
-19	36.844	0.60795346	32	4.137	2.76063657
-18	35.038	0.63530819	33	3.989	2.805589174
-17	33.331	0.66352684	34	3.847	2.850117358
-16	31.719	0.69257720	35	3.711	2.894109636
-15	30.196	0.72246147	36	3.58	2.937788018
-14	28.755	0.75321223	37	3.455	2.980713033
-13	27.392	0.78480857	38	3.335	3.023117961
-12	26.103	0.81722911	39	3.219	3.065272268
-11	24.882	0.85051031	40	3.108	3.106725146
-10	23.727	0.88458737	41	3.001	3.147759536
-9	22.632	0.91951536	42	2.899	3.187898487
-8	21.594	0.95527085	43	2.801	3.227439565
-7	20.611	0.99179340	44	2.706	3.266717909
-6	19.678	1.02913875	45	2.615	3.305249514
-5	18.794	1.06721353	46	2.528	3.342947037
-4	17.954	1.10609872	47	2.444	3.380169671
-3	17.158	1.14565549	48	2.363	3.416856492
-2	16.401	1.18599135	49	2.286	3.45247766
-1	15.683	1.22696435	50	2.211	3.487894953
0	15	1.26865672	51	2.139	3.522585993
1	14.351	1.31098658	52	2.07	3.556485356
2	13.734	1.35393437	53	2.003	3.590032381
3	13.148	1.39741342	54	1.939	3.622673675
4	12.589	1.44157386	55	1.877	3.654865988
5	12.058	1.48618720	56	1.818	3.686036427
6	11.553	1.53125563	57	1.76	3.717201166
7	11.071	1.57689691	58	1.705	3.747244673
8	10.613	1.62286005	59	1.652	3.776658768
9	10.176	1.66928515	60	1.6	3.805970149
10	9.76	1.71601615	61	1.551	3.834009923
11	9.363	1.76311968	62	1.503	3.861880963
12	8.985	1.81043663	63	1.457	3.888973616
13	8.624	1.85805887	64	1.413	3.91524643
14	8.279	1.90597205	65	1.37	3.941267388
15	7.951	1.95387327	66	1.328	3.967019291
16	7.637	2.00204130	67	1.289	3.991234935
17	7.337	2.05033368	68	1.25	4.015748031

APPENDIX

Thermistor Resistance Values

18	7.051	2.09859271		69	1.213	4.039284017
19	6.778	2.14682606		70	1.177	4.062450215
20	6.516	2.19524793		71	1.142	4.085229093
21	6.267	2.24333597		72	1.109	4.106941536
22	6.028	2.29151689		73	1.076	4.12888601
23	5.8	2.33944954		74	1.045	4.149715216
24	5.581	2.38741691		75	1.015	4.17007359
25	5.372	2.43506494		76	0.986	4.189944134
26	5.172	2.48247664		77	0.957	4.210004953
27	4.981	2.52951096		78	0.93	4.228855721
28	4.797	2.57653834		79	0.904	4.247168554
29	4.622	2.62291710		80	0.878	4.265640683
30	4.453	2.66931854				
Note: the AD value	e in the table is cal	culated on the bas	is of th	e pull-down resistor	is 5.1K.	·

2. THE PARAMETER OF OUTDOOR COMPRESSOR TEMPERATURE SENSOR:

		R(0)=187.25k	B(0100)=3979)		
Temperature (°C)	Resistance(k)	Voltage(V)	Temperature (°C)	Resistance (k)	Voltage(V)
-20	542.867	0.06185563	51	19.907	1.273074475
-19	512.839	0.06543004	52	19.148	1.310312934
-18	484.672	0.06917993	53	18.422	1.348029498
-17	458.239	0.07311215	54	17.728	1.386170907
-16	433.423	0.07723358	55	17.065	1.424680494
-15	410.115	0.08155140	56	16.43	1.463624623
-14	388.213	0.08607312	57	15.822	1.502961719
-13	367.625	0.09080590	58	15.241	1.542579738
-12	348.264	0.09575738	59	14.684	1.582573078
-11	330.048	0.10093573	60	14.151	1.622834232
-10	312.904	0.10634837	61	13.64	1.663405088
-9	296.761	0.11200385	62	13.151	1.704175229
-8	281.556	0.11790981	63	12.682	1.745200698
-7	267.227	0.12407536	64	12.233	1.78637104
-6	253.72	0.13050821	65	11.802	1.827760456
-5	240.982	0.13721739	66	11.388	1.869364416
-4	228.965	0.14421140	67	10.992	1.910971223
-3	217.624	0.15149895	68	10.611	1.952788467
-2	206.917	0.15908889	69	10.246	1.994602839
-1	196.805	0.16699001	70	9.896	2.036415908
0	187.25	0.17521257	71	9.559	2.078366648
1	177.957	0.18402550	72	9.236	2.120229484
2	169.186	0.19319719	73	8.925	2.162162162
3	160.903	0.20273937	74	8.627	2.203928178
4	153.179	0.21252789	75	8.341	2.245558418
5	145.685	0.22297275	76	8.065	2.287251934

APPENDIX

Thermistor Resistance Values

6	138.696	0.23368340	77	7.8	2.328767123
7	132.086	0.24480509	78	7.546	2.369998606
8	125.833	0.25634646	79	7.301	2.411176512
9	119.916	0.26831655	80	7.065	2.452217815
10	114.315	0.28072493	81	6.843	2.492120501
11	109.01	0.29358432	82	6.624	2.532777116
12	103.984	0.30690352	83	6.414	2.573028606
13	99.222	0.32068816	84	6.212	2.612972641
10	94.708	0.33494897	85	6.017	2.652726847
15	90.427	0.34969710	86	5.829	2.692216328
16	86.366	0.36494000	87	5.648	2.731362468
10	82.512	0.38068793	88	5.474	2.770083102
18	78.854	0.39694585	89	5.306	2.808524698
19	75.381	0.41372093	90	5.144	2.846617549
20	72.082	0.43102355	91	4.988	2.884289108
20	68.948	0.44885674	91	4.900	2.921715219
21					2.958579882
	65.968	0.46723835	93	4.692	
23	63.136	0.48615877	94	4.552	2.995066949
24	60.443	0.50562884	95	4.417	3.031113488
25	57.88	0.52566481	96	4.286	3.066931265
26	55.367	0.54691396	97	4.161	3.10190676
27	52.978	0.56877112	98	4.039	3.13682074
28	50.707	0.59123237	99	3.922	3.171050177
29	48.547	0.61430611	100	3.776	3.214826021
30	46.492	0.63799445	101	3.703	3.237170332
31	44.537	0.66229036	102	3.602	3.268602192
32	42.676	0.68720188	103	3.501	3.300650422
33	40.904	0.71272849	104	3.409	3.33039475
34	39.217	0.73885738	105	3.317	3.360680043
35	37.609	0.76561057	106	3.228	3.390506582
36	36.077	0.79296593	107	3.141	3.420179056
37	34.616	0.82093877	108	3.058	3.448975451
38	33.224	0.84949031	109	2.977	3.477549351
39	31.895	0.87866649	110	2.899	3.505516033
40	30.628	0.90841082	111	2.823	3.533201704
41	29.419	0.93873381	112	2.749	3.56058226
42	28.264	0.96965549	113	2.678	3.587254695
43	27.162	1.00111890	114	2.609	3.613561484
44	26.109	1.03315203	115	2.542	3.639477628
45	25.103	1.06573050	116	2.477	3.664977902
46	24.142	1.09883007	117	2.414	3.6900369
47	23.223	1.13246511	118	2.353	3.714629083
48	22.345	1.16658089	119	2.294	3.738728832
49	21.505	1.20120120	120	2.237	3.762310501
50	20.701	1.23631868			

122